Japan
サイト内の現在位置
オンライン最適化に関する論文リスト
研究成果:オンライン最適化に関する論文一覧
Ito, Shinji, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, and Ken-Ichi Kawarabayashi. "Efficient sublinear-regret algorithms for online sparse linear regression with limited observation." Advances in Neural Information Processing Systems 30 (2017).
Ito, Shinji, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, and Ken-Ichi Kawarabayashi. "Online regression with partial information: Generalization and linear projection." International Conference on Artificial Intelligence and Statistics. PMLR, 2018.
Yabe, Akihiro, Daisuke Hatano, Hanna Sumita, Shinji Ito, Naonori Kakimura, Takuro Fukunaga, and Ken-ichi Kawarabayashi. "Causal bandits with propagating inference." International Conference on Machine Learning. PMLR, 2018.
Ito, Shinji, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, and Ken-Ichi Kawarabayashi. "Regret bounds for online portfolio selection with a cardinality constraint." Advances in Neural Information Processing Systems 31 (2018).
Takemura, Kei, and Shinji Ito. "An Arm-Wise Randomization Approach to Combinatorial Linear Semi-Bandits." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.
Ito, Shinji. "Submodular function minimization with noisy evaluation oracle." Advances in Neural Information Processing Systems 32 (2019).
Ito, Shinji, Daisuke Hatano, Hanna Sumita, Kei Takemura, Takuro Fukunaga, Naonori Kakimura, and Ken-Ichi Kawarabayashi. "Improved regret bounds for bandit combinatorial optimization." Advances in Neural Information Processing Systems 32 (2019).
Ito, Shinji, Daisuke Hatano, Hanna Sumita, Kei Takemura, Takuro Fukunaga, Naonori Kakimura, and Ken-Ichi Kawarabayashi. "Oracle-efficient algorithms for online linear optimization with bandit feedback." Advances in Neural Information Processing Systems 32 (2019).
Ito, Shinji, Daisuke Hatano, Hanna Sumita, Kei Takemura, Takuro Fukunaga, Naonori Kakimura, and Ken-Ichi Kawarabayashi. "Delay and cooperation in nonstochastic linear bandits." Advances in Neural Information Processing Systems 33 (2020): 4872-4883.
Ito, Shinji. "An optimal algorithm for bandit convex optimization with strongly-convex and smooth loss." International Conference on Artificial Intelligence and Statistics. PMLR, 2020.
Ito, Shinji. "A tight lower bound and efficient reduction for swap regret." Advances in Neural Information Processing Systems 33 (2020): 18550-18559.
Ito, Shinji, Shuichi Hirahara, Tasuku Soma, and Yuichi Yoshida. "Tight first-and second-order regret bounds for adversarial linear bandits." Advances in Neural Information Processing Systems 33 (2020): 2028-2038.
Takemura, Kei, Shinji Ito, Daisuke Hatano, Hanna Sumita, Takuro Fukunaga, Naonori Kakimura, and Ken-ichi Kawarabayashi. "A parameter-free algorithm for misspecified linear contextual bandits." International Conference on Artificial Intelligence and Statistics. PMLR, 2021.
Takemura, Kei, et al. "Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits with Linear Payoff Functions." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 11. 2021.
Matsuoka, Tatsuya, Shinji Ito, and Naoto Ohsaka. "Tracking Regret Bounds for Online Submodular Optimization." International Conference on Artificial Intelligence and Statistics. PMLR, 2021.
Ito, Shinji. "Parameter-free multi-armed bandit algorithms with hybrid data-dependent regret bounds." Conference on Learning Theory. PMLR, 2021.
Ito, Shinji. "Hybrid regret bounds for combinatorial semi-bandits and adversarial linear bandits." Advances in Neural Information Processing Systems 34 (2021).
Ito, Shinji. "On optimal robustness to adversarial corruption in online decision problems." Advances in Neural Information Processing Systems 34 (2021).
資料ダウンロード・お問い合わせ