画像認識技術を活用した マイナンバー収集サービス

宇田川 裕之 増田 隆 岩元 浩太 秋山 達勇

要旨

2016年1月から税や社会保険などの手続きにマイナンバーが必要になり、事業者は、従業員やその扶養家族のマイナンバー を収集する必要性が出てきました。これを受けて、NECネクサソリューションズでは、マイナンバー収集のためのスマートデ バイス (iPhoneやAndroid端末) 向けアプリを開発しました。 今回開発したアプリでは、画像認識技術を活用し、スマー トデバイスでマイナンバーを「読み取る」ことによって、より簡単に、そして、より正確にマイナンバーを取り扱うことを実現し ています。本稿では、「画像認識技術で何ができて、それを今後どのように活用していくのか」について紹介します。

画像認識/被写体認識/被写体識別/スマートデバイス/OCR/マイナンバー/業務効率/働き方改革/IoT

1. はじめに

マイナンバーの収集が必須となり、各社からマイナンバー の収集代行サービスが提供されるようになりました。NEC ネクサソリューションズ (以下、NEXS) でも「マイナンバー 対応BPOサービス」において、収集代行サービスを提供し ています。NEXSが提供するサービスでは、郵送による収 集とスマートデバイスによる収集を実施しています。

ここからは、スマートデバイスを利用したマイナンバーの 収集にまつわる技術について紹介します。

2. スマートデバイスを利用した収集

2.1 収集の仕組み

スマートデバイスのカメラで、マイナンバーが記された通 知カードないしは個人番号カードを撮影し、撮影した画像 を送信して登録するのが一般的な仕組みになります。必 要に応じて運転免許証などの本人確認書類も、同じように 送信します(図1)。

スマートデバイスを活用することで、書類やコピーを郵 送するよりも簡単にマイナンバーを提出できます。

2.2 収集における課題

カメラ撮影によるマイナンバーの収集は操作が簡単です が、その反面、次の課題があります。

(1)撮影失敗

手ブレやピンボケ、あるいは、撮影したカードがはみ 出していてマイナンバーが読めないケースが考えられ ます。

(2)対象間違い

誤って別のカードを撮影して気付かずに送るケースや、 扶養家族のカードを撮影するときに、対象者を間違え て撮影して気付かずに送るケースも考えられます。

図1 マイナンバー収集

(3)マイナンバーのデータ化

マイナンバーが、画像のままではITシステムでデータ として処理することができず、帳票印刷などの処理が 行えません。そのため、何らかの方法でデータ化する 必要があります。

カード撮影時に、マイナンバーを入力してもらい画像 と一緒に送ればデータ化できますが、入力間違いの 危険性があります。

(4)データ流出

撮影した画像は、ネットワーク回線を経由して収集 データベースに送られます。不特定多数が利用する公 衆無線LANなどでは、盗聴の危険性があります。 また、登録した画像のマイナンバーが読めなかったり、 別の人の番号を送ってしまったりすると、収集のやり 直しなどの修正作業が発生します。これでは、収集 対象者と事業者の双方に余計な手間が掛かります。 マイナンバーは、機密性が高くセキュリティ対策も重

3. 画像認識技術の利用

要です(図2)。

NEXSでは、NEC中央研究所と連携して、画像認識技術 の実証をしています。画像認識技術には、人間の顔を対象 とした「顔認証」や部品を対象にした「物体指紋認証」など の各種技術がありますが、それらのなかから「被写体識別」

と「OCR^{*}」をマイナンバー収集に活用しています(表)。

3.1 被写体識別

撮影した画像のなかの「どこに」「何が」あるのかを、あ らかじめ登録した認識対象物の画像との照合により認識 する技術です(図3)。認識のための情報を、対象物に付 加するバーコードやICタグなどとは異なり、対象物そのも のを認識するため、デザイン上の制約が少なく、既存のも のに手を加えずに認識できるというメリットがあります。

被写体識別技術は、NECが独自に開発した、画像中の特 徴的な点 (特徴点) の周辺領域をコンパクトに記述する局所 特徴量方式のBRIGHT特徴量1)を用います。撮影画像か ら、検出される多数の特徴点からBRIGHT特徴量を抽出 し、あらかじめマスターデータベースに登録してある認識対 象物の画像の局所特徴量と照合します。こうして、求まった 画像間の局所特徴量の対応関係から、撮影画像における対 象物の位置・向きを正確に算出します(図4)。BRIGHT

表 課題に対する画像認識技術の活用

課題	画像認識技術
手ブレ	被写体識別
ピンボケ	被写体識別
はみ出し	被写体識別
対象間違い	被写体識別、OCR
データ化	被写体識別、OCR

図2 収集における課題

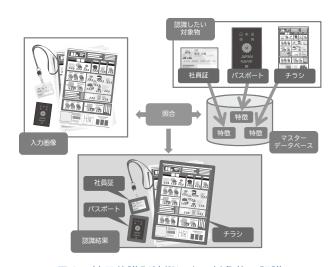


図3 被写体識別技術による対象物の認識

Optical Character Recognition(光学文字認識):手書き文字や印字された文字を、テキスト情報としてデータ化する技術。

特徴量は、対象物が画像に写る大きさ・向き・明るさに不 変であるため、登録画像とは異なる撮影角度・大きさ・照 明条件でも認識できますし、対象物の一部が隠れていても 認識することができます。またBRIGHT特徴量は、高い 認識精度を保ちながら、従来の局所特徴量と比較して特徴 量サイズが 1/10 以下と小さいため、スマートフォンなどの 携帯端末でも高速な照合が可能になっています。

3.2 OCR (文字認識)

画像中の指定された領域から、そこに含まれる文字の字 種を識別します(図5)。まず、撮影画像から文字線の方向 情報を特徴として抽出し、複数次元の特徴ベクトルを計算 します。そして、撮影画像の特徴ベクトルと、字種ごとにあ らかじめ辞書登録された特徴ベクトル (テンプレート) との 間の距離計算をし、距離値が小さいテンプレートの字種を 認識結果とします。

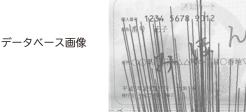
スキャナなどでカードを撮像する場合は、傾きもなく鮮 明な画像が得られるため、認識しやすい入力画像が得られ ます。しかし、スマートフォンなどの端末で撮影する場合は、 カードと端末の角度によっては文字がひずんだり、端末(搭 載カメラやオートフォーカスの性能など) によっては画像が ぼけたりする課題があるため、次に述べる方法で性能改善 をしています。まず、前処理として、被写体識別で得られる 対象物の位置・向きの情報を用いて、正面向きから撮影し た画像に補正することで、斜めにひずんだ文字の認識を容

易にしています(図5(a))。また、テンプレートの準備に当 たって、ぼけを含む画像を人工的に生成して、テンプレート のバリエーションを増やすことで、ぼけに対する頑健性を強 化しています (図5(b))。

3.3 認識技術の活用

上記で説明した「被写体識別」と「OCR」の技術をどの ように活用しているか紹介します。

(1) 手ブレ・ピンボケ対策


通知カードや個人番号カードの撮影で、手ブレやピン ボケがひどい場合、被写体識別でのカードの認識がで きなくなります。このことを利用して、対象のカードが きれいに撮影できているかをチェックします(図6)。

(2)はみ出し対策

撮影時に近寄りすぎたり左右にずれたりして、カード がはみ出すことも考えられます。被写体識別では撮 影した画像のどの位置に被写体があるのかが分かる ので、その機能を利用することで、被写体が画像から はみ出していないかどうかをチェックします (図6)。

(3)撮影対象物の確認

通知カードや個人番号カードを撮影するつもりで、 うっかり別のカードを撮影する場合もあります。この 場合も被写体識別でカードの認識ができなくなるた め、正しいものを撮影しているかどうかのチェックが できます(図6)。

撮影画像

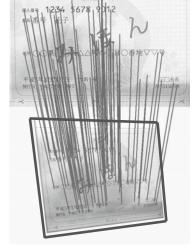
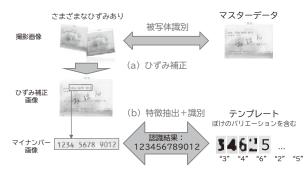



図4 BRIGHT特徴量を用いた照合

(b)カメラ入力を想定したOCR処理

図5 OCRでの文字種の識別処理

(4)マイナンバーのデータ化

OCRによって、カードに印字されているマイナンバー をデータ化します。これによりマイナンバーを手入力 することなく、ITシステムで使用できるようになりま す。画像全体にOCRを適用するのではなく、被写体 識別によってカードの種類と位置を特定して、OCR の対象領域を正確に決めています。事前に余計な情 報を取り除くことで、より高い精度での読み取りを実 現しています(図7)。

4. セキュリティ

マイナンバーは機密性の高い情報であり、適切な取り扱

図6 撮影成功・失敗

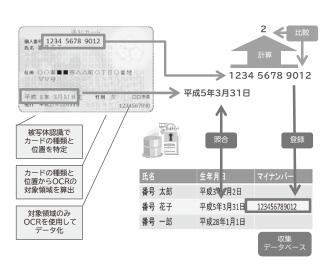


図7 マイナンバーのデータ化

いが求められます。番号法²⁾³⁾⁴⁾には、マイナンバーなどの 特定個人情報の提供や保護に関する規定があり、個人情 報保護法よりも厳しい罰則が設けられています。このこと から分かるように、マイナンバーを取り扱ううえでは、セキュ リティに十分な配慮が必要となります。そのため、スマー トデバイスが行う通信を暗号化し、撮影した画像や、画像 から読み取ったマイナンバーの情報はメモリ上のみで取り 扱い、利用が終わったらすみやかに消去します(図8)。

5. 今後の展望

今後、マイナンバーの収集利用だけではなく、さまざま な業務シーンのなかで利用できるようなサービスを、提供 する予定です。例えば、口座開設や会員証発行の際に必 要な身分証明書を、一時的に預かりデータ登録するので はなく、お客様の目の前でそれらを撮影するだけで、デー 夕化が可能になります。これは、身分証明書を一時的にせ よ提供することに抵抗感を持たれる方への、不安を払拭す ることにもつながります。

6. むすび

本稿では、被写体識別技術とOCR技術の融合により、 マイナンバーを簡単にかつ正確に収集することで、収集コ ストの大幅な削減の実現と、その技術の更なる応用につい て説明しました。NEXSは、今後も、先進的な技術を活用

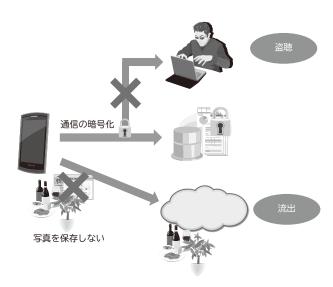


図8 セキュリティ対策

したサービスを提供し、安全・安心・効率・公平という価 値が実現された社会の構築を、NECとともに目指します。

- *iPhone、iPadはApple Inc.の商標です。 iPhone 商標は、 アイホン株式会社のライセンスに基づき使用されています。
- *Androidは、Google Inc.の商標または登録商標です。
- *その他記述された社名、製品名などは、該当する各社の商標ま たは登録商標です。

参考文献

- 1) K. Iwamoto, R. Mase, and T. Nomura: BRIGHT: A Scalable and Compact Binary Descriptor for Low-Latency and High Accuracy Object Identification, Proc. of ICIP2013, pp.2915-2919, 2013.
- 2) 行政手続における特定の個人を識別するための番号の利用等 に関する法律施行令
 - (平成二十六年三月三十一日政令第百五十五号) 第八条 http://law.e-gov.go.jp/announce/H26SE155.html
- 3) 行政手続における特定の個人を識別するための番号の利用等 に関する法律の規定による通知カード及び個人番号カード並び に情報提供ネットワークシステムによる特定個人情報の提供等 に関する省令(平成二十六年十一月二十日総務省令第八十五 号)第五条
 - http://law.e- gov.go.jp/announce/ H26F11001000085.html
- 4) 行政手続における特定の個人を識別するための番号の利用等 に関する法律(平成二十五年五月三十一日法律第二十七号) http://law.e-gov.go.jp/announce/H25HO027.html

執筆者プロフィール

宇田川 裕之

NECネクサソリューションズ株式

会社

サービス第一営業部

部長

増田 隆

NECネクサソリューションズ株式 会社

第四システム事業部

主任

岩元 浩太

秋山 達勇

データサイエンス研究所 主任研究員

データサイエンス研究所

主任

NEC 技報のご案内

NEC技報の論文をご覧いただきありがとうございます。 ご興味がありましたら、関連する他の論文もご一読ください。

NEC技報WEBサイトはこちら

NEC技報(日本語)

NEC Technical Journal (英語)

Vol.70 No.1 デジタルビジネスを支えるIoT特集

デジタルビジネスを支えるIoT 特集によせて デジタルビジネスを支えるNECのIoT事業

◇ 特集論文

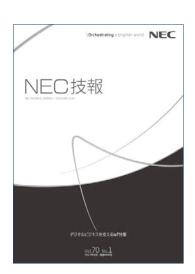
IoT を支えるプラットフォーム

ビジネス変革を支えるIoTプラットフォーム「NEC the WISE IoT Platform」
IoTの顧客価値を支えるエッジコンピューティング
IoTのミッシングリンクをつなぐエッジコンピューティング技術
エッジコンピューティングのソリューション事例

お客様に価値を提供する IoT ソリューション

IoT 時代のものづくり「NEC Industrial IoT」

作業効率化と品質向上を同時に実現する画像・重量検品ソリューション AI技術「自律適応制御」を用いた倉庫人員最適配置ソリューション ヒアラブル技術によるヒューマン系IoT ソリューションの取り組みと展望 パブリックセーフティを支える映像配信技術


IoT・AIによる小売業の革新

工場機器をリアルタイムに遠隔制御する無線ネットワーク技術:無線 ExpEther IoT における多様なデバイスに適用可能な軽量暗号

NECの生産拠点における需要予測の取り組み ~AI×エスノグラフィによる現場定着~

◇普通論文

画像認識技術を活用したマイナンバー収集サービス

Vol.70 No.1 (2017年9月)

特集TOP