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Abstract. This paper proposes a versatile approach for solving three
kinds of absolute camera pose estimation problem: PnP problem for cal-
ibrated cameras, PnPf problem for cameras with unknown focal length,
and PnPfr problem for cameras with unknown focal length and unknown
radial distortion. This is not only the first least squares solution to PnPfr
problem, but also the first approach formulating three problems in the
same theoretical manner. We show that all problems have a common
subproblem represented as multivariate polynomial equations. Solving
these equations by Gröbner basis method, we derive a linear form for
the remaining parameters of each problem. Finally, we apply root pol-
ishing to strictly satisfy the original KKT condition. The proposed PnP
and PnPf solvers have comparable performance to the state-of-the-art
methods on synthetic distortion-free data. Moreover, the novel PnPfr
solver gives the best result on distorted point data and demonstrates
real image rectification against significant distortion.

Keywords: Absolute Camera Pose Estimation, PnP Problem, Focal
Length, Radial Distortion

1 Introduction

Camera parameter estimation from n pairs of 2D-3D point correspondence in a
single image has been a fundamental problem in computer vision and photogram-
metry community. The camera parameters consist of two kinds of parameters.
One is the extrinsic parameters which determine the position and the orientation
of the camera, i.e., 3D rotation and translation. The other is the intrinsic pa-
rameters which are optical properties of the camera unaffected by the extrinsic
parameters, i.e., focal length, skew, principal point, aspect ratio, lens distortion,
etc. The name of the parameter estimation problem is different depending on
unknown parameters: Perspective-n-Point (PnP) problem when the extrinsic pa-
rameters are unknown and all the intrinsic parameters are calibrated in advance,
PnPf problem for partially calibrated cameras when only focal length is known,
PnPfr problem when radial distortion of the lens is additionally unknown.

It is well discussed that n = 3 is the minimal number of the points required to
solve PnP problem [1–3]. The trend of the latest PnP solvers is to find the global
optimal solution for n ≥ 3 case in linear complexity O(n) without considering
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planar or non-planar scene. The first O(n) method is EPnP [4], but it does not
assure the global optimality. Hesch and Roumeliotis [5] proposed Direct Least
Square method (DLS) which finds all stationary points of the first optimality
condition, also known as the Karush-Kuhn-Tucker (KKT) condition, by solving
a system of nonlinear multivariate polynomial equations. The DLS approach has
been improved for more stability and efficiency [6, 7], and extended to generalized
camera model which has multiple focal points [8]. However, applications of PnP
problem are limited due to the strict assumption that the intrinsic parameters
are never changed during shooting a scene. Prior full calibration is mandatory,
but it is difficult for cameras having a zoom lens.

PnPf problem deals with a relaxed assumption where the intrinsic parame-
ters are known except for focal length. Since principal point, skew, and aspect
ratio are invariant to zoom change, focal length is the only varying parameter.
Moreover, for recent digital cameras, we can assume that zero skew (square pix-
els), one aspect ratio (parallel mount of lens and camera), and principal point
is at the image center (center aligned lens and camera). P4Pf [9–11] and PnPf
[12–14] solvers have been proposed, which use n = 4 for the minimal case and
n ≥ 4 for the least square case, respectively. Kanaeva et al. [14] extended EPnP
to PnPf problem by improving EPnP’s drawbacks, and pointed out that Zheng
et al.’s PnPf solver [13] sometimes fails to calculate focal length on real data.
However, PnPf problem’s assumption ignores the fact that lens distortion is also
changeable according to zoom variation. Similarly to PnP problem, complete
prior lens distortion correction is difficult for zooming cameras. Therefore, PnPf
solvers can handle only slight zoom change where lens distortion can be ignored
or approximated by fixed parameters.

To deal with lens distortion, P4Pfr [15, 16] and P5Pfr [17] solvers have been
developed. They modeled radial lens distortion by Fitzgibbon’s division model
[18] for simple formulations. Kukelova et al. [17] showed that the three-parameter
division model is practically sufficient for 3D shape reconstruction from real im-
ages even with significant distortion. Since these solvers are designed for the
minimal case, they cannot improve the parameter accuracy for n points with-
out a costly reprojection error minimization. Addition to the P4Pfr and P5Pfr
solvers, some methods correcting lens distortion from a single image have been
proposed [19, 20]. However, those methods are not sufficiently fast for real-time
applications, such as Visual SLAM and augmented reality.

This paper proposes three solvers for PnP, PnPf, and PnPfr problems which
are derived from the same theoretical formulation. Inspired by Kukelova et al.’s
P5Pfr solver [17], the key is to find a common subproblem among the three
problems. The common subproblem is expressed by only a part of the extrinsic
parameters, therefore, this subproblem can be solved by Gröbner basis method
similarly to the existing PnP solvers [6–8]. Regarding the solutions of the com-
mon subproblem as known parameters, we show that estimation of the remaining
parameters can be formulated as a linear problem. This part slightly differs de-
pending on each problem but can be solved in the same manner. Finally, for
easy implementation of root polishing, we derive new equations without La-
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Table 1. Comparison of PnP, PnPf, and PnPfr problems. Numbers marked with †

and ⋆ indicate the case of the one- and the three-parameter division model for radial
distortion, respectively. This paper discusses only the latter case

Parameters PnP PnPf PnPfr

Rotation X X X

Translation X X X

Focal Length X X

Radial Distortion X

# of parameters 6 7 8†, 10⋆

Required points 3 4 4†, 5⋆

grange multipliers, which are equivalent to the original KKT condition. This is
an extension of Nakano’s approach for PnP problem [7].

Synthetic data experiments show that the proposed PnP and PnPf solvers
have the same accuracy and efficiency as the state-of-the-art methods on PnP
and PnPf problems without lens distortion. For lens distortion data, the proposed
PnPfr solver is the only method that is able to improve the parameter accuracy
with increasing the number of the points. Moreover, we show that the PnPfr
solver successfully corrects significant lens distortion on real images taken by an
ultra-wide zoom camera.

2 Problem formulation

This section describes mathematical formulations of PnP, PnPf, and PnPfr prob-
lems. In this paper, we assume the standard pinhole camera model for the pro-
jection between 2D-3D point correspondences and the three-parameter division
model for radial distortion [17].

The projection of a 3D point pi = [xi, yi, zi]
T onto a 2D image point mi =

[ui, vi, wi]
T represented by the homogeneous coordinates can be written as

mi ∼ K(Rpi + t), (1)

where ∼ denotes equality up to scale, R is a 3×3 rotation matrix, t = [tx, ty, tz]
T

is a translation vector, and K = diag([1, 1, f−1]) is the calibration matrix of the
camera with focal length f . As mentioned in Section 1, we assume zero skew,
one aspect ratio, and principal point corresponding to the image center.

The common unknowns among PnP, PnPf, and PnPfr problems are the ex-
trinsic parameters, R and t. The homogeneous term wi and intrinsic parameters
to be estimated are different in each problem. In PnP problem, wi = 1 and f
is known. In PnPf problem, wi = 1 but f is unknown. In PnPfr problem, f is
also unknown and wi = 1 + kTdi, where di = [u2

i + v2i , (u
2
i + v2i )

2, (u2
i + v2i )

3]T

and k = [k1, k2, k3]
T is a 3 × 1 vector containing the unknown radial distortion

coefficients.
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Note that the image coordinates ui and vi represent undistorted points in
PnP and PnPf problems but distorted points in PnPfr problem. Hereafter, for
simple notations, this paper does not distinguish the description of distorted or
undistorted points.

Now we formulate PnPfr problem. PnP and PnPf problems can be similarly
derived by regarding f or k as the knowns. Given n point correspondences, PnPfr
problem can be written as a constrained nonlinear optimization,

min
R,t,f,k

n
∑

i=1

∥

∥[mi]× K(Rpi + t)
∥

∥

2

s.t. R
T
R = I, det(R) = 1,

(2)

where [ ]× denotes a matrix representation of the vector cross product, i.e.,

[mi]× =





0 −wi vi
wi 0 −ui

−vi ui 0



 . (3)

This operator is introduced to eliminate the scale ambiguity of Eq. (1).
In Eq. (2), the total number of the unknowns is 10, of which three from R,

three from t, one from f , and three from k. Since [mi]× is of rank two, Eq. (1)
gives us two equations for each point correspondences. Therefore, Eq. (2) can
be solved by n ≥ 5 point correspondence. PnP and PnPf problems are also
solvable because they have totally six and seven unknowns, which are less than
10, respectively. Table 1 summarizes the unknown parameters and the number
of the unknowns in each problem.

3 Proposed method

This section describes the derivation of the proposed method. We begin with
an overview of the key idea, which divides the least squares problem into two
subproblems. Then, we derive efficient solutions to the subproblems based on
Gröbner basis method and a linear method, respectively. Finally, we introduce
a root polishing technique to satisfy the KKT condition of the original problem.

3.1 Overview

Define three row vectors aTi , b
T

i , and cTi corresponding to the first, second and
third row of [mi]×, respectively. Note that those terms contain the unknown
radial distortion k in wi. By introducing them into Eq. (2), the cost function
can be rewritten by

min
R,t,f,k

n
∑

i=1

∥

∥[mi]× qi

∥

∥

2
=

n
∑

i=1

(aTi qi)
2 + (bT

i qi)
2 + (cTi qi)

2, (4)

where qi = K(Rpi + t). The rotation matrix constraints are omitted here.



Versatile Approach for PnP, PnPf, and PnPfr Problems 5

Interpreting Eq. (4) from the point of view of algebraic geometry, the two
vectors, mi and qi, are collinear without noise in data. In other words, minimiz-
ing Eq. (4) with noisy data is equivalent to finding the optimal parameters so
that the three terms are closed to zeros. Therefore, if we minimized each term
as an independent subproblem and obtained solutions from them, we can expect
that one of the solutions is closed to the global optimum. This is the key idea of
the proposed method.

Let us move on how to build the subproblems. Expanding aTi qi, b
T

i qi and
cTi qi, we obtain

aTi qi = −wi(r
T

2pi + ty) + vif
−1(rT3pi + tz), (5)

bT

i qi = wi(r
T

1pi + tx)− uif
−1(rT3pi + tz), (6)

cTi qi = −vi(r
T

1pi + tx) + ui(r
T

2pi + ty), (7)

where rj denotes the j-th row of R. Interestingly, Eq. (7) does not have wi, a
function of k, and is expressed by only a part of the extrinsic parameters, r1,
r2, tx, and ty whereas Eqs. (5) and (6) consist of all the unknown parameters.

Thus, we can define the first subproblem by

min
r1,r2,tx,ty

n
∑

i=1

(cTi qi)
2

s.t. ‖r1‖
2
= 1, ‖r1‖

2
− ‖r2‖

2
= 0, rT1 r2 = 0.

(8)

There seems to be eight unknowns in Eq. (8). However, actual degrees of freedom
is five due to the three constraints for r1 and r2. Therefore, Eq. (8) can be solved
by n ≥ 5 point correspondences. After finding r1 and r2, we can recover R by
calculating the third row, r3 = r1 × r2.

Plugging R, tx, and ty into Eqs. (5) and (6), we still have five unknowns, tz,
f , and k. Since the rotation matrix has been already estimated, the remaining
unknowns do not have any constraints.

Therefore, we can build the second subproblem as

min
tz,f,k

n
∑

i=1

(aTi qi)
2 + (bT

i qi)
2. (9)

Given n ≥ 5 point correspondences, we can solve Eq. (9) because 2n equations
are available for the five unknowns.

The estimated parameters from the above two subproblems are not the op-
timal solution to the original problem, Eq. (4). Therefore, we finally refine the
parameters by conducting a root polishing to get more accuracy and optimality.

From Sections 3.2 to 3.4, we will discuss the details of specific methods for
each step.
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3.2 Solving the first subproblem

From Eq. (7), the cost function of Eq. (8) can be rewritten by

min
r1,r2,tx,ty

n
∑

i=1

(cTi qi)
2 =

∥

∥Ar̂+ Bt̂
∥

∥

2
, (10)

where

A =







−v1p
T

1 u1p
T

1
...

...
−vnp

T

n unp
T

n






, B =







−v1 u1

...
...

−vn un






, r̂ =

[

r1
r2

]

, t̂ =

[

tx
ty

]

. (11)

Since there are no constraints about t̂, we can express t̂ as a function of r̂, i.e.,

t̂ = −(BTB)−1
B
T
Ar̂. (12)

Substituting this into Eq. (10), we obtain a new constrained problem as follows:

min
r1,r2

r̂TMr̂

s.t. ‖r1‖
2
= 1, ‖r1‖

2
− ‖r2‖

2
= 0, rT1 r2 = 0,

(13)

where

M = A
T
A− A

T
B(BTB)−1

B
T
A. (14)

Since Eq. (13) has a similar form in the existing PnP solvers [6–8], we can
use same Gröbner basis technique for solving the optimal r̂. If we introduce
a quaternion based parameterization for representing the rotation matrix as
in [6, 8], we obtain up to 40 solutions, which is exactly the same number of
the solutions to [6–8]. However, there is a sign ambiguity for r1 and r2, that
means −r1 and −r2 also give the minimum error with satisfying the constraints.
Therefore, the number of the solutions is actually 20, not 40. Any quaternion
based parameterizations cannot distinguish the sign ambiguity of ±r̂ because
quaternion has a sign ambiguity in itself. To obtain 20 solutions by Gröbner basis
method, we need to derive new equations independent to the norm definition of
r1 and r2.

Let Mij be a (i, j) entry of 3×3 block matrix which partitions the 6×6 matrix
M into 2× 2 blocks. The Lagrange function of Eq. (13) can be written by

L = rT1 M11r1 + 2rT1 M12r2 + rT2 M22r2

+ λ1(1− ‖r1‖
2
) + λ2(‖r1‖

2
− ‖r2‖

2
) + 2λ3r

T

1 r2, (15)

where λi is a Lagrange multiplier and the multiplier 2 for λ3 is merely for con-
venience. The KKT condition of Eq. (15) is given by
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∂L

∂r1
= M11r1 + M12r2 + (λ2 − λ1)r1 + λ3r2 = 0, (16)

∂L

∂r2
= M22r2 + M

T

12r1 − λ2r2 + λ3r1 = 0, (17)

∂L

∂λ1
= 1− ‖r1‖

2
= 0, (18)

∂L

∂λ2
= ‖r1‖

2
− ‖r2‖

2
= 0, (19)

∂L

∂λ3
= rT1 r2 = 0, (20)

Multiplying [r1]× and [r2]× to Eqs. (16) and (17), respectively, we obtain

[r1]× (M11r1 + M12r2) + λ3 [r1]× r2 = 0, (21)

[r2]× (M22r2 + M
T

12r1) + λ3 [r2]× r1 = 0. (22)

Using the relation [r1]× r2 = − [r2]× r1, we can eliminate λ3 by adding Eqs. (21)
and (22). Thus, we obtain

[r1]× (M11r1 + M12r2) + [r2]× (M22r2 + M
T

12r1) = 0. (23)

Moreover, multiplying rT2 and rT1 to Eqs. (16) and (17), respectively, we obtain

rT2 (M11r1 + M12r2) + λ3 ‖r2‖
2
= 0, (24)

rT1 (M22r2 + M
T

12r1) + λ3 ‖r1‖
2
= 0. (25)

Since the norm of r1 and r2 are equal to each other as in Eq. (19), we can also
eliminate λ3 by subtracting Eq. (24) from Eq. (25),

rT2 (M11r1 + M12r2)− rT1 (M22r2 + M
T

12r1) = 0. (26)

It should be noted that Eqs. (23) and (26) hold for any types of normal-
ization of r1 as long as the other constraints, Eqs. (19) and (20), are satisfied.
Hence, instead of Eq. (18), we can use a linear constraint for eliminating the
sign ambiguity of r1 and r2, e.g., r11 = 1 or r11 + r12 + r13 = 1, where rij is
the (i, j) element of R. Therefore, we can obtain r1 and r2 by solving Eqs. (19),
(20), (23), and (26) together with the new linear constraint for r1.

Since the above equations can be represented by a system of nonlinear poly-
nomial equations, the solution can be obtained by using Gröbner basis method.
A simple way is to use an automatic generator of Gröbner basis solvers developed
by Kukelova et al. [21]. In our case, the automatic generator gives a 105 × 125
template matrix for Gauss-Jordan elimination and a 20 × 20 action matrix for
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the eigenvalue computation. We obtained a further optimized 97× 117 template
matrix by sorting all equations before starting necessary equation extraction in
the automatic solver. This solver gives at most 20 pairs of r1 and r2, from which
we can recover t̂ by Eq. (12) and two rotation matrices by considering the sign
ambiguity:

R =





rT1
rT2

(r1 × r2)
T



 , R =





−rT1
−rT2

(r1 × r2)
T



 . (27)

An example code for the automatic generator of this subproblem is shown in
Appendix A in the supplemental material.

3.3 Solving the second subproblem

The solution to the second subproblem slightly differs on PnP, PnPf, PnPfr
problems. Due to limitations of space, we show a solution to PnPfr problem
only. Solutions to PnP and PnPf problems are described in Appendix B in the
supplemental material.

Regarding R, tx, and ty from Section 3.2 as known parameters, we can rewrite
Eq. (9) as

min
tz,f,k

n
∑

i=1

∥

∥

∥

∥

[

aTi
bT

i

]

qi

∥

∥

∥

∥

2

= ‖Lx+ g‖
2
, (28)

where

L =















v1 v1z
c
1 −yc1d

T

1

−u1 −u1z
c
1 xc

1d
T

1
...

vn vnz
c
1 −ycnd

T

n

−un −unz
c
1 xc

nd
T

n















, x =





f−1tz
f−1

k



 , g =















−yc1
xc
1
...

−ycn
xc
n















,

xc
i = rT1pi + tx, yci = rT2pi + ty, zci = rT3pi.

(29)

This is a linear form for the unknown vector x, therefore, the solution can be
obtained by solving a normal equation x = −(LTL)−1

L
Tg. Then, tz can be

recovered by dividing the first element by the second element in x.

3.4 Root polishing

As a result from Sections 3.2 and 3.3, we can obtain all the unknown parameters.
However, these parameters are not the optimal solution because the subproblems
are kinds of approximation of the original problem. In order to increase the
accuracy and optimality, we introduce a root polishing technique so that the
parameters strictly satisfies the KKT condition.
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Let us recall the original PnPfr problem, Eq. (4). Since ai, bi, and ci are
linearly independent, we can equivalently rewrite the cost function of Eq. (4) as

min
R,t,f,k

n
∑

i=1

(aTi qi)
2 + (bT

i qi)
2 =

∥

∥C(f,k)r+ D(f,k)t
∥

∥

2
, (30)

where C(f,k) and D(f,k) are n × 9 and n × 3 coefficient matrices containing the
unknowns f and k, respectively. Due to limitations of space, we describe the
details of the formulation in Appendix C in the supplemental material.

Similarly to the first subproblem in Section 3.2, we can express t as a function
of the other unknowns,

t(r,f,k) = −(DTD)−1
D
T
Cr. (31)

Here, we omitted the subscript (f,k) of C and D for simple notations. Then,
plugging Eq. (31) into Eq. (30), we obtain a new constrained problem

min
r,f,k

rTG(f,k)r

s.t. R
T
R = I, det(R) = 1,

(32)

where

G(f,k) = C
T
C− C

T
D(DTD)−1

D
T
C. (33)

Root polishing is performed to find the optimal solution of Eq. (32), a con-
strained problem, with initial guess from the first and the second subproblems.
A typical and easy way to solve Eq. (32) is convert the constrained problem
into an unconstrained problem by expressing the rotation matrix with Euler
angle or Cayley transform. However, those representations cannot be uniquely
determined in the singularity case, which often happens in real camera motions.
Alternative way is to solve new equations, which are equivalent to the orig-
inal KKT condition without any Lagrange multipliers. Introducing Nakano’s
approach [7] for PnP problem, we obtain such new equations as follows:

R
Tmat(Gr)−mat(Gr)TR = 03×3, (34)

mat(Gr)RT − R mat(Gr)T = 03×3, (35)

R
T
R− I = 03×3, (36)

det(R)− 1 = 0, (37)

∂

∂f
rTGr = 0, (38)

∂

∂k
rTGr = 03×1. (39)
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Here, mat( ) is a reshaping operator from a 9×1 vector to a 3×3 square matrix.
As Nakano proved in [7], the above equations hold for any types of rotation
parameterization instead of Eqs. (36) and (37), e.g., quaternion.

We can solve the system of nonlinear equations, Eq. (34) through Eq. (39),
by a simple Gauss-Newton method. An important thing to note here is that
numerical differentiation is required in the Gauss-Newton iteration for PnPfr
problem because G(f,k), Eq. (33), cannot be analytically represented by the two
unknonws, f and k. On the other hand, in the case of PnP and PnPf problems,
we can compute C and D without the unknowns and do not need to update G

in the iteration. The details of the formulation are also described in Appendix
C in the supplemental material. This procedure takes less than 10 iterations in
almost all cases as long as we have tested. After the convergence, we can recover
t according to Eq. (31).

4 Experiments on synthetic data

Using synthetic data, we have evaluated the proposed PnP, PnPf and PnPfr
solvers on accuracy with respect to varying the number of the points n and
varying zero-mean Gaussian noise with standard deviation σ on image points.
All tests were executed on Core i7-6700 with 16GB RAM on MATLAB 2015b.

In this section, we call our PnP, PnPf, and PnPfr solvers as VPnP, VPnPf,
and VPnPfr. The proposed solvers were compared with the following existing
methods; EPnP+GN [4], OPnP [6], UPnP [8] for PnP problem, and DLT [22],
GPnPf+GN [13], EPnPfR [14]1 for PnPf and PnPfr problems. We used the
original MATLAB code available on the web except for UPnP written in C++.

Due to limitations of space, we will discuss non-planar scene only. However,
the conclusion and the tendency of the methods would not change if tested
with planar scene. We generated randomly distributed 3D points in the x-,
y-, and z-range of [−2, 2] × [−2, 2] × [4, 8]. Then, those points are projected
onto a virtual camera with image resolution 640× 480 [pixels], focal length 800
[pixels], principal point at the coordinate [320, 240]. For evaluating VPnPfr, we
distorted image points by small radial distortion [k1, k2, k3] = [−0.1, 0, 0], and
compared with the conventional PnPf solvers assuming zero distortion. In the
case of PnPf and PnPfr problems, as suggested in [15], we scaled image points
with a factor of 2/max(width, height) so that all points have normalized coor-
dinates between ±1. The ground-truth rotation and translation of the camera
are randomly generated. We measured the relative error of estimated parame-
ters except for the rotation matrix. The rotation error was the absolute error
given by maxk∈{1,2,3} cos

−1(rTk rk,true) [degrees], where rk and rk,true are k-th
column of the estimated and the ground-truth rotation matrices, respectively.
We performed 500 independent trials for each test.

1 EPnPfR is not a method for PnPfr problem but an extension of EPnP to PnPf
problem. Although the meaning of ”fR” is not mentioned in the paper, it is inferred
”focal length” and ”Regularization” for EPnP.
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Fig. 1. Median error w.r.t. varying number of points (6 ≤ n ≤ 100) with fixed image
noise (σ = 2). Top: PnP problem. Middle: PnPf problem. Bottom: PnPfr problem

4.1 Accuracy w.r.t. varying number of points

We configured 6 ≤ n ≤ 100 and σ = 2 in this experiment. The reason for starting
by n = 6 is that DLT and EPnP+GN cannot work on n = 5. Fig. 1 shows the
median errors of PnP, PnPf, and PnPfr solvers.

In the case of PnP and PnPf problems (top and middle in Fig. 1), most
of the solvers except for DLT have same performance. This result shows that
the proposed approach, which sequentially solves subproblems, gives globally
optimal solution as the existing methods do.

As shown in the bottom plots in Fig. 1, VPnPfr outperforms the other meth-
ods in the case of distorted image points. Interestingly, the existing PnPf solvers
cannot improve the accuracy of translation and focal length with increasing n,
whereas the rotation error becomes lower. The result of the intrinsic parame-
ters implies that VPnPfr requires n ≥ 100 for focal length and radial distortion
estimation to converge the optimal solution on σ = 2.
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Fig. 2. Median error w.r.t. varying image noise (1 ≤ σ ≤ 5) with fixed number of
points (n = 20). Top: PnP problem. Middle: PnPf problem. Bottom: PnPfr problem

4.2 Accuracy w.r.t. varying image noise

In the next experiment, we have studied the accuracy with respect to varying
1 ≤ σ ≤ 5 in the case of fixed n = 20. The median errors of PnP, PnPf, and
PnPfr solvers are shown on top, middle, and bottom, in Fig. 2, respectively.

Similarly to the previous experiment in Section 4.1, our VPnP and VPnPf
have comparable performance to the state-of-the-art solvers in PnP and PnPf
problems. In addition to that, we can also observe an interesting result in the
case of PnPfr problem.

As the image noise increases, focal length estimation of VPnPfr becomes
worse than that of PnPf solvers, which assume zero distortion. The image noise
seems to affect translation rather than focal length for PnPf solvers. From this,
if we need only focal length, PnPf solvers might be more suitable than VPnPfr
when the image points have potentially large errors. However, VPnPfr is still the
best method for estimating the intrinsic and extrinsic parameter simultaneously.
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Fig. 4. Results of the proposed PnPfr solver on real images. Top: Original images with
small (1st column, 58◦ HFOV) to significant (4th column, 118◦ HFOV) distortion.
Bottom: Undistorted images corresponding to the original images on the top row

4.3 Computational time w.r.t. varying number of points

We measured the computational time with 6 ≤ n ≤ 2000 and σ = 2. Fig. 3
shows the average time. Note that UPnP is a mex implementation.

The proposed VPnP and VPnPf take less than 3 msec which is sufficiently
fast for real-time applications. Moreover, these runtime increases moderately,
almost in O(1), even in the thousands of the points. This is the fastest for large
number of points, n ≥ 400. In contrast, the runtime of VPnPfr grows O(n).
The solver for the first subproblem is completely same, therefore, the difference
is caused by the root polishing. In the current implementation, updating the
matrix G is required in every Gauss-Newton iteration for VPnPfr, but only once
for VPnP and VPnPf as shown in Appendix C in the supplemental material.
We can expect that the runtime of VPnPfr becomes closed to that of VPnP and
VPnPf if we introduce a more optimized implementation on the root polishing.
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5 Experiments on real data

We have tested the proposed PnPfr solver to remove lens distortion on real im-
ages. We mounted an ultra-wide vari-focal lens, TAMRON 12VM412ASIR, on
a USB 3.0 camera, iDS UI-3370CP-C-HQ. The focal length of the lens is man-
ually changeable from 4.0 mm to 12 mm. This is equivalent to the horizontal
field of view from 58◦ to 118◦ for the camera. To obtain 2D-3D point correspon-
dences for calculating the camera parameters, we took a single image of a 6× 9
checkerboard pattern for each scene and detected corners by libcbdetect [23].

Fig. 4 shows the original distorted and the undistorted images on the top
and the bottom rows, respectively. Straight lines of buildings and brick patterns
on the road are successfully corrected even with a significant distortion.

6 Conclusions

In this paper, we have proposed a versatile approach for solving PnP, PnPf, and
PnPfr problems from n ≥ 5 point correspondences. The proposed PnPfr solver
is the first method for PnPfr problem in the least-squares sense. Based on the
derivation of the PnPfr solver, we also have formulated PnP and PnPf solvers in
the same theoretical manner, which can be implemented with slight changes from
the PnPfr solver. By evaluating the proposed methods on synthetic data, we have
shown that the PnP and PnPf solvers have the same performance with the-state-
of-the-art methods for undistorted points. Moreover, the PnP and PnPf solvers
are the fastest for large point set, n ≥ 400. On a real image experiment using an
ultra-wide zoom camera, the novel PnPfr solver have corrected significant lens
distortion corresponding to 118◦ HFOV. Future works of the PnPfr solver are to
improve the runtime of root polishing and accuracy of the distortion coefficients
for high image noise.
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