
A Versatile Approach for Solving PnP, PnPf,

and PnPfr Problems

–Appendix–

Gaku Nakano

Central Research Labs, NEC Corporation, Japan

g-nakano@cq.jp.nec.com

A MATLAB code for the automatic generator

% register the generator

setpaths;

% coefficient matrix (6x6 symmetric)

M = gbs_Matrix(’M%d%d’, 6, 6);

M = M - tril(M) + triu(M).’;

% unknowns (1st and 2nd row of R)

syms a b c d e

r1 = [a; b; c];

r2 = [d; e; 1]; %linear constraint, R(3,3)=1

% build polynomial equations

A = M(1:3,1:3)*r1 + M(1:3,4:6)*r2;

B = M(1:3,4:6).’*r1 + M(4:6,4:6)*r2;

S1 = [0 -c b; c 0 -a; -b a 0]; % [r1]_x

S2 = [0 -1 e; 1 0 -d; -e d 0]; % [r2]_x

eq1 = S1*A + S2*B; % Eq.(23)

eq2 = r2.’*A - r1.’*B; % Eq.(26)

ceq1 = r1.’*r1 - r2.’*r2; % Eq.(19)

ceq2 = r1.’*r2; % Eq.(20)

eqs = [ceq1, ceq2, eq1(:).’, eq2];

% collect known & unknown variables

unknown = {’a’,’b’, ’c’, ’d’,’e’};

vars = symvar(M);

known = {};

for var = vars, known = [known {char(var)}]; end

% call gbsolver

[res, export] = gbs_CreateCode(mfilename, eqs, known, unknown);

The final published version is available at https://rd.springer.com/chapter/10.1007/978-3-319-46487-9_21.

DOI: 10.1007/978-3-319-46487-9_21



2 G. Nakano

B Solving the second subproblem for PnP and PnPf

problems

In PnPf problem, because of k = 0, we do not need to compute the third, fourth,
and fifth columns of L in Eq. (29). Thus, L and x are represented as

L =















v1 v1z
c
1

−u1 −u1z
c
1

...
...

vn vnz
c
1

−un −unz
c
1















, x =

[

f−1tz
f−1

]

. (B-1)

The vector g is the same as described in Eq. (29).

In PnP problem, f−1 is known and k = 0. From this, we obtain

L = f−1















v1
−u1

...
vn

−un















, x = tz, g = f−1















v1z
c
1

−u1z
c
1

...
vnz

c
1

−unz
c
1















+















−yc1
xc
1
...

−ycn
xc
n















. (B-2)

C Detail formulations of KKT condition for root

polishing

Let Im be an m × m identity matrix and ⊗ be an operator representing the
kronecker product. In PnPfr problem, we can write C(f,k) and D(f,k) as

C(f,k) = A1W+ A2Y, (C-1)

D(f,k) = B1K+ B2Z, (C-2)



Versatile Approach for PnP, PnPf, and PnPfr Problems 3

where

A1 =





















−pT

1 v1p
T

1

0n×3

...
...

−pT

n vnp
T

n

pT

1 −u1p
T

1
... 0n×3

...
pT

n −unp
T

n





















, A2 =





















−(p1 ⊗ d1)
T

0n×9

...
−(pn ⊗ dn)

T

(p1 ⊗ d1)
T

... 0n×9

(pn ⊗ dn)
T





















,

B1 =





















−1 v1

0n×1

...
...

−1 vn
1 u1

... 0n×1

...
1 un





















, B2 =





















−dT

1

0n×3

...
−dT

n

dT

1
... 0n×3

dT

n





















,

W =

[

I6
f−1I3

]

, Y =
[

I6 ⊗ k, 018×3

]

, Z =
[

I2 ⊗ k, 06×1

]

.

(C-3)

In PnPf problem, Y and Z are zero matrices due to k = 0. Thus, we obtain

C(f) = A1W, (C-4)

D(f) = B1K. (C-5)

Substituting Eqs. (C-4) and (C-5) into Eqs. (30) and (31), respectively, we obtain

min
R,t,f

‖A1Wr+ B1Kt‖
2

(C-6)

and

t(r,f) = −(KTBT1 B1K)
−1KTBT1 A1Wr

= −K−1(BT1 B1)
−1BT1 A1Wr. (C-7)

Then, a new constrained problem for PnPf problem can be represented as

min
r,f

rTWḠWr

s.t. RTR = I, det(R) = 1,
(C-8)

where

Ḡ = AT1 A1 − AT1 B1(B
T

1 B1)
−1BT1 A1. (C-9)



4 G. Nakano

We can write the KKT condition for PnPf problem without Lagrange multipliers
by

RTmat(WḠWr)−mat(W̄GWr)TR = 03×3,

mat(W̄GWr)RT − R mat(WḠWr)T = 03×3,

RTR− I = 03×3,

det(R)− 1 = 0,

∂

∂f
rTWḠWr = 0.

(C-10)

In PnP problem, since f is known, we can calculate Ǧ = WḠW and represent a
new constrained problem as

min
r

rTǦr

s.t. RTR = I, det(R) = 1.
(C-11)

Then, the KKT condition for PnP problem can be written by

RTmat(Ǧr)−mat(Ǧr)TR = 03×3,

mat(Ǧr)RT − R mat(Ǧr)T = 03×3,

RTR− I = 03×3,

det(R)− 1 = 0.

(C-12)

Obviously Ḡ and Ǧ do not contain any unknowns. Therefore we do not need
to update Ḡ and Ǧ in the Gauss-Newton iteration for PnP and PnPf problems.


