A Versatile Approach for Solving PnP, PnPf,
and PnPfr Problems
—Appendix—

Gaku Nakano

Central Research Labs, NEC Corporation, Japan
g—nakano@cq. jp.nec.com

A MATLAB code for the automatic generator

/i register the generator
setpaths;

% coefficient matrix (6x6 symmetric)
M = gbs_Matrix(’MJ)d%d’, 6, 6);
M=M-tril(M) + triu(M).’;

% unknowns (1st and 2nd row of R)

syms a b cd e

rl = [a; b; cl;

r2 = [d; e; 1]; %linear constraint, R(3,3)=1

%» build polynomial equations

A = M(1:3,1:3)*r1 + M(1:3,4:6)*r2;

B = M(1:3,4:6).°*rl + M(4:6,4:6)*r2;

S1 = [0 -c b; ¢c 0 -a; -bao]l; % [r1]_x
S2 =1[0-1e; 10-d; -ed0]; % [r2]_x
eql = S1¥A + S2%B; % Eq.(23)
eq2 = r2.°*%A - rl1.’%B; % Eq. (26)
ceql = rl.’*rl - r2.’*r2; % Eq.(19)
ceq2 = rl.’*r2; % Eq. (20)

eqs = [ceql, ceq2, eql(:).’, eq2];

% collect known & unknown variables

unknown = {’a’,’b’, ’c’, ’d’,’e’};
vars = symvar (M) ;
known = {};

for var = vars, known = [known {char(var)}]; end

% call gbsolver
[res, export] = gbs_CreateCode(mfilename, eqs, known, unknown);

The final published version is available at https://rd.springer.com/chapter/10.1007/978-3-319-46487-9 21.
DOI: 10.1007/978-3-319-46487-9 21

2 G. Nakano

B Solving the second subproblem for PnP and PnPf
problems

In PnPf problem, because of k = 0, we do not need to compute the third, fourth,
and fifth columns of L in Eq. (29). Thus, L and x are represented as

V1 Ulzf_
—u; —U12§ ; .
. . Tt
C
—Up —Un 2§

The vector g is the same as described in Eq. (29).

In PnP problem, f~! is known and k = 0. From this, we obtain

) R
—U —u1 2§ Ty
L=f"1| |, x=t,, g=f" o+ (B-2)
Un Un 2y ~Yn
| —Up, | | —up2f e

C Detail formulations of KKT condition for root
polishing

Let I,, be an m x m identity matrix and ® be an operator representing the
kronecker product. In PnPfr problem, we can write C(s k) and Dy k) as

C(f,k) = AW+ AY, (C—l)
D(sx) = BiK+ B2Z, (C-2)

Versatile Approach for PnP, PnPf, and PnPfr Problems 3

where
i —p7 uvip] | [—(p1®dy)"]
0n><3 E E Onxg :
P —uip] |’ (p1®dy)T ’
O’I’LXB S S O’I'LX9
| pl _unpl_ _(pn & dn)T _
s - d]] o
0n><1 0n><3 -
-1 v, - —d,,
Bl — 1 Uy) B2 — d'll')
Onxl OTLX3
1 Up | i dl |
I
W= [6f—1I3] , Y=[Is ®k, O18x3], Z= [I2®Kk, Ogx1] .

In PnPf problem, Y and Z are zero matrices due to k = 0. Thus, we obtain
C(f) = AW, (C—4)
D¢y = BiK. (C-5)
Substituting Egs. (C-4) and (C-5) into Egs. (30) and (31), respectively, we obtain
. 2
min |A1Wr + B1Kt || (C-6)

and

t(r.s) = —(K'B{B1K) 'K'B{ AjWr
— —K ' (B]B;) " 'B] Aywr. (C-7)

Then, a new constrained problem for PnPf problem can be represented as

min r'WGWr
oS (C-8)
st. RR=1I, det(R)=1,

where

G=A/A; —A/B;(B]B;) 'BJA;. (C-9)

4 G. Nakano

We can write the KK'T condition for PnPf problem without Lagrange multipliers
by
R mat(WGWr) — mat(WGWr) "R = 033,

mat(WGWr)R' — R mat(WGWr)" = 033,

R'R— I = 0343, (C-10)
det(R) — 1 =0,
%rTWGWr = 0.

In PnP problem, since f is known, we can calculate G = WGW and represent a
new constrained problem as

min r'Gr
rooL (C-11)
st. RTR=1, det(R)=1.
Then, the KKT condition for PnP problem can be written by
R mat(Gr) — mat(Gr) "R = 033,
mat(Gr)RT — R mat(Gr)T =0 ,
(@) (@6)7 = 0.5 o1

R'R— I = 0343,
det(R) — 1 =0.

Obviously G and G do not contain any unknowns. Therefore we do not need
to update G and G in the Gauss-Newton iteration for PnP and PnPf problems.

