CLUSTERPRO® X 4.0 for Windows

スタートアップガイド

2018.09.14 第2版

改版履歴

版数	改版日付	内 容
1	2018/04/17	新規作成
2	2018/09/14	内部バージョン 12.01 に対応

© Copyright NEC Corporation 2018. All rights reserved.

免責事項

本書の内容は、予告なしに変更されることがあります。

日本電気株式会社は、本書の技術的もしくは編集上の間違い、欠落について、一切責任をおいません。また、お客様が期待される効果を得るために、本書に従った導入、使用および使用効果につきましては、お客様の責任とさせていただきます。

本書に記載されている内容の著作権は、日本電気株式会社に帰属します。本書の内容の一部または全部を日本電気株式会社の許諾なしに複製、改変、および翻訳することは禁止されています。

商標情報

CLUSTERPRO® は、日本電気株式会社の登録商標です。

Microsoft、Windows、Windows Server、Internet Explorer、Azure、Hyper-V は、米国 Microsoft Corporation の米国およびその他の国における登録商標です。

Amazon Web Services およびすべての AWS 関連の商標、ならびにその他の AWS のグラフィック、ロゴ、ページへッダー、ボタンアイコン、スクリプト、サービス名は、米国および/またはその他の国における、AWS の商標、登録商標またはトレードドレスです。

Oracle、Oracle Database、Solaris、MySQL、Tuxedo、WebLogic Server、Container、Java およびすべての Java 関連の商標は、Oracle Corporation およびその子会社、関連会社の米国およびその他の国における商標または登録商標です。

WebOTX は、日本電気株式会社の登録商標です。

SVF は、ウイングアークテクノロジーズ株式会社の登録商標です。

Apache Tomcat、Tomcat、Apache は、Apache Software Foundation の登録商標または商標です。 F5、F5 Networks、BIG-IP、およびiControl は、米国および他の国におけるF5 Networks, Inc. の商標また

は登録商標です。 Equalizer は、米Coyote Point Systems 社の登録商標です。

SAP NetWeaver、および本文書に記載されたその他の SAP の製品やサービス、ならびにそれらの個々のロゴは、ドイツおよびその他の国における SAP SE (又は SAP の関連会社)の商標または登録商標です。

Python は、Python Software Foundation の登録商標です。

IBM、DB2、WebSphere は、International Business Machines Corporationの米国およびその他の国における商標または登録商標です。

MIRACLE LoadBalancer は、サイバートラスト株式会社の日本における登録商標です。

PostgreSQL は、PostgreSQL Global Development Group の登録商標です。

PowerGres は、株式会社 SRA の商標または登録商標です。

WebSAM は、日本電気株式会社の登録商標です。

本書に記載されたその他の製品名および標語は、各社の商標または登録商標です。

目次

はじめに		ix
対象読者と目的		ix
本書の構成		ix
CLUSTERPRO マニュアル体系		x
本書の表記規則		xi
最新情報の入手先		xii
セクション I CLUSTE	ERPRO の概要	13
第 1 章 クラスタシステムと	:ta?	15
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		
	olit-brain-syndrome)	
· ·	mit-brain-syndrome)	
Single Point of Failure の排除		28
 共有ディスク		29
障害の監視		32
第 2 章 CLUSTERPRO(こついて	33
CLUSTERPRO とは?		34
CLUSTERPRO のソフトウェア構	成	36
CLUSTERPRO の障害監視のしくる	み	36
	: ない障害	
	ない障害	
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	ィスク至クラスタのハートフェア構成	
	- イヘンエンフへブロン・ 「マンエン 構成 リッドディスク型クラスタのハードウェア構成	
	ファーティスクエクラススクマン・ 1 フェン IB/W	
ハートドートリソーフ		/1Ω

ネットワークパーティション解決リソース	
グループリソース	
モニタリソース	
CLUSTERPRO を始めよう!	
最新情報の確認	
クラスタシステムの設計	
クラスタシステムの構築	
クラスタシステムの運用開始後の障害対応	54
セクション Ⅱ リリースノート (CLUSTERPRO 最新情報)	55
第 3 章 CLUSTERPRO の動作環境	57
ハードウェア動作環境	58
必要スペック	
Express5800/A1080a,A1040a シリーズとの連携に対応したサーバ	58
CLUSTERPRO Server の動作環境	59
対応 OS	59
必要メモリ容量とディスクサイズ	59
監視オプションの動作確認済アプリケーション情報	
仮想マシンリソースの動作環境	
SNMP 連携機能の動作環境	
JVM監視の動作環境	
システム監視及びシステムリソース情報を収集する機能の動作環境	
AWS Elastic IPリソース、AWS 仮想IPリソース、AWS Elastic IP監視リソース、AWS 仮想IP監視リソー	
AWS AZ監視リソースの動作環境	
AWS DNS リソース、AWS DNS 監視リソースの動作環境	
動作環境	
Azure DNS リノーへ、Azure DNS 監視リノーへの動作環境SAP連携コネクタの動作環境	
Cluster WebUI の動作環境	
動作確認済 OS、ブラウザ	
- め要メモリ容量/ディスク容量	
Builder の動作環境	
動作確認済 OS、ブラウザ	
3) Tr 能	
必要メモリ容量/ディスク容量	
対応する CLUSTERPRO の内部バージョン	
WebManager の動作環境	
動作確認済 OS、ブラウザ	
Java 実行環境	
必要メモリ容量/ディスク容量	73
統合WebManager の動作環境	74
動作確認済 OS、ブラウザ	74
Java 実行環境	
必要メモリ容量/ディスク容量	74
第 4 章 最新バージョン情報	75
CLUSTERPRO とマニュアルの対応一覧	76
機能強化	
修正情報	
第 5 章 注意制限事項	83
システム構成検討時	
ミラーディスク/ハイブルッドディスクの悪体について	8/

IPv6環境について	
ネットワーク構成について	
共有ディスクの要件について	
ミラーディスク/ハイブリッドディスクの write 性能について	86
非同期ミラーの履歴ファイルについて	86
複数の非同期ミラー間のデータ整合性について	87
マルチブートについて	87
JVM監視リソースについて	
ネットワーク警告灯の要件について	
CLUSTERPRO インストール前	
ファイルシステムについて	
通信ポート番号	
通信ポート番号の自動割り当て範囲の変更	
ポート数不足を回避する設定について	
時刻同期の設定	
共有ディスクについて	
ミラーディスク用のパーティションについて	
ハイブリッドディスク用のパーティションについて	
データパーティション上のフォルダやファイルのアクセス許可について	
) ― 5ハー / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	
ろ 起勤時間の調整 ネットワークの確認	
FSMPRO/AutomaticRunningController との連携について	
ipmiutil について Server Core へのインストールについて	
メール通報について	
システムディスクが接続された HBA のアクセス制限について	
AWS 環境における時刻同期	
AWS 環境における IAM の設定について	
Azure プローブポートリソースについて	
Azure DNS リソースについて	
CLUSTERPRO の構成情報作成時	
CLUSTERPRO インストールパス配下のフォルダやファイルについて	
グループリソースの非活性異常時の最終アクション	
遅延警告割合	
ディスク監視リソースとハイブリッドディスク TUR 監視リソースの監視方法 T	
WebManager の画面更新間隔について	103
ハートビートリソースの設定について	
統合 WebManager 用 IP アドレス (パブリック LAN IP アドレス) の設定に	
スクリプトのコメントなどで取り扱える 2 バイト系文字コードについて	104
グループの起動可能サーバに設定可能なサーバグループ数について	
JVM監視の設定について	105
システム監視の設定について	105
PostgreSQL監視の設定について	105
AWS Elastic IPリソースの設定について	105
AWS 仮想IPリソースの設定について	
AWS DNS リソースの設定について	
AWS DNS 監視リソースの設定について	
Azure プローブポートリソースの設定について	
Azure ロードバランス監視リソースの設定について	107
Azure DNS リソースの設定について	
Windows Server 2012 ベースのシステムにおけるサービス失敗時の回復操作	
OS のネットワーク負荷分散機能との共存について	
CLUSTERPRO 運用後	
回復動作中の操作制限	
コマンドリファレンスに記載されていない実行形式ファイルやスクリプトファイル	
クラスタシャットダウン・クラスタシャットダウンリブート	
特定サーバのシャットダウン、リブート	
- 13 /C / 1947 1 / 1 / 1 / 1 / 1 1 mmmmmmmmmmmmmmmmm	

ネットワークパーティション状	態からの復旧	110
WebManager について		110
CLUSTERPRO Disk Agent	: サービスについて	112
	情報の変更について	
ミラーディスクの待機系のクラ	ラスタ復帰について	112
ミラーディスク-ハイブリッドデ	ィスク間の構成変更について	112
[chkdsk] コマンドとデフラグ l	について	112
	τ	
Windows Server 2012 以隆	峯の環境におけるユーザーアカウント制御の影響について	113
	スクリプトリソースの画面表示について	
ネットワークインターフェイス	カード (NIC) が二重化されている環境について	114
	のログオンアカウントについて	
CLUSTERPROの常駐プロイ	セスの監視について	114
外部連携モニタリソースにつ	いて	114
JVM監視リソースについて		115
	τ	
ミラー統計情報採取機能と(OS 標準機能との連携に伴うイベントログ出力について	115
[対話型サービスダイアログの	D検出]ポップアップ表示について	116
AWS 環境におけるAMIのリ	ストアについて	116
CLUSTERPROの構成変更	頁時	117
	他ルールについて	
リソースプロパティの依存関	係について	117
グループリソースの追加、削	除について	117
CLUSTERPROアップグレ-	ード時	118
	- 覧	
	32	
	.1/3.0/3.1/3.2/3.3 との互換性について	
	前との互換機能について	
	11CV 11CV 1	
付録		129
付録 A 用語集		131
사원 D = 크리		405
付録 B 索引		135

はじめに

対象読者と目的

『CLUSTERPRO® X スタートアップガイド』の構成は、セクション I とセクション II の 2 部に分かれています。セクション I では、CLUSTERPRO を初めてご使用になるユーザを対象に、CLUSTERPRO の製品概要と基本的な使用方法について説明します。

セクション II では、CLUSTERPRO を導入前のユーザ、および導入後のアップデートを行うユーザを対象に、最新の動作環境情報や制限事項などについて紹介します。

本書の構成

セクション I CLUSTERPRO の概要

第1章 「クラスタシステムとは?」:クラスタシステムの概要について説明します。

第2章 「CLUSTERPRO について」: CLUSTERPRO の使用方法および関連情報について説明 します。

セクション || リリースノート

第3章 「CLUSTERPRO の動作環境」: 導入前に確認が必要な最新情報について説明します。 第4章 「最新バージョン情報」: CLUSTERPRO の最新バージョンについての情報を示します。

第5章 「注意制限事項」: 既知の問題と制限事項について説明します。

付録

付録 A 「用語集」 付録 B 「索引」

CLUSTERPRO マニュアル体系

CLUSTERPRO のマニュアルは、以下の 4 つに分類されます。各ガイドのタイトルと役割を以下に示します。

『CLUSTERPRO X スタートアップガイド』 (Getting Started Guide)

CLUSTERPRO を使用するユーザを対象読者とし、製品概要、動作環境、アップデート情報、既知の問題などについて記載します。

『CLUSTERPRO X インストール&設定ガイド』 (Install and Configuration Guide)

CLUSTERPRO を使用したクラスタシステムの導入を行うシステムエンジニアと、クラスタシステム導入後の保守・運用を行うシステム管理者を対象読者とし、CLUSTERPRO を使用したクラスタシステム導入から運用開始前までに必須の事項について説明します。実際にクラスタシステムを導入する際の順番に則して、CLUSTERPRO を使用したクラスタシステムの設計方法、CLUSTERPRO のインストールと設定手順、設定後の確認、運用開始前の評価方法について説明します。

『CLUSTERPRO X リファレンスガイド』(Reference Guide)

管理者、および CLUSTERPRO を使用したクラスタシステムの導入を行うシステムエンジニアを対象とし、 CLUSTERPRO の運用手順、各モジュールの機能説明、メンテナンス関連情報およびトラブルシューティン グ情報等を記載します。『インストール&設定ガイド』を補完する役割を持ちます。

『CLUSTERPRO X 統合WebManager 管理者ガイド』 (Integrated WebManager Administrator's Guide)

CLUSTERPRO を使用したクラスタシステムを CLUSTERPRO 統合WebManager で管理するシステム 管理者、および 統合WebManager の導入を行うシステムエンジニアを対象読者とし、統合WebManager を使用したクラスタシステム導入時に必須の事項について、実際の手順に則して詳細を説明します。

本書の表記規則

本書では、注意すべき事項、重要な事項および関連情報を以下のように表記します。

注: は、重要ではあるがデータ損失やシステムおよび機器の損傷には関連しない情報を表します。

重要: は、データ損失やシステムおよび機器の損傷を回避するために必要な情報を表します。

関連情報: は、参照先の情報の場所を表します。

また、本書では以下の表記法を使用します。

表記	使用方法	例
[] 角かっこ	コマンド名の前後 画面に表示される語 (ダイアログ ボックス、メニューなど) の前後	[スタート] をクリックします。 [プロパティ] ダイアログボックス
コマンドライ ン中の [] 角かっこ	かっこ内の値の指定が省略可能であることを示します。	clpstat -s[-h host_name]
モノスペース フォント (courier)	パス名、コマンドライン、システムからの出力 (メッセージ、プロンプトなど)、ディレクトリ、ファイル名、関数、パラメータ	c:\Program files\CLUSTERPRO
モノスペース フォント太字 (courier)	ユーザが実際にコマンドプロンプト から入力する値を示します。	以下を入力します。 clpcl -s -a
モノスペース フォント斜体 (courier)	ユーザが有効な値に置き換えて入 力する項目	clpstat -s [-h host_name]

最新情報の入手先

最新の製品情報については、以下のWebサイトを参照してください。

https://jpn.nec.com/clusterpro/

セクション I CLUSTERPRO の概要

このセクションでは、CLUSTERPRO の製品概要と動作環境について説明します。

- 第1章 クラスタシステムとは?第2章 CLUSTERPRO について

第 1 章 クラスタシステムとは?

本章では、クラスタシステムの概要について説明します。

本章で説明する項目は以下のとおりです。

•	クラスタシステムの概要	16
•	HA (High Availability) クラスタ ·······	17
•	システム構成	21
•	障害検出のメカニズム ····································	24
•	クラスタリソースの引き継ぎ	26
	Single Point of Failure の排除・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	_
	可用性を支える運用	
	うかはとくだめたが	~

クラスタシステムの概要

現在のコンピュータ社会では、サービスを停止させることなく提供し続けることが成功への重要なカギとなります。例えば、1 台のマシンが故障や過負荷によりダウンしただけで、顧客へのサービスが全面的にストップしてしまうことがあります。そうなると、莫大な損害を引き起こすだけではなく、顧客からの信用を失いかねません。

クラスタシステムを導入することにより、万一のときのシステム停止時間 (ダウンタイム) を最小限に食い止めたり、負荷を分散させたりすることで可用性を高めます。

クラスタとは、「群れ」「房」を意味し、その名の通り、「複数のコンピュータを一群(または複数群)にまとめて、信頼性や処理性能の向上を狙うシステム」です。クラスタシステムには様々な種類があり、以下の3つに分類できます。この中で、CLUSTERPROは HA (High Availability) クラスタに分類されます。

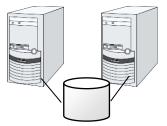
♦ HA (High Availability) クラスタ

通常時は一方が現用系として業務を稼動させ、現用系障害発生時に待機系に業務を引き継ぐような形態のクラスタです。高可用性を目的としたクラスタです。共有ディスク型、ミラーディスク型があります。

◆ 負荷分散クラスタ

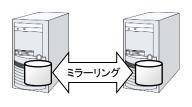
クライアントからの要求を適切な負荷分散ルールに従って、各ノードに割り当てるクラスタです。高スケーラビリティを目的としたクラスタで、一般的にデータの引き継ぎはできません。ロードバランスクラスタ、並列データベースクラスタがあります。

◆ HPC (High Performance Computing) クラスタ


非常に計算量が多いクラスタのこと。スーパコンピュータを用いて単一の業務を実行するためのクラスタです。全てのノードの CPU を利用し、単一の業務を実行するグリッドコンピューティングという技術も近年話題に上ることが多くなっています。

HA (High Availability) クラスタ

一般的にシステムの可用性を向上させるには、そのシステムを構成する部品を冗長化し、 Single Point of Failure をなくすことが重要であると考えられます。Single Point of Failure とは、コンピュータの構成要素(ハードウェアの部品)が 1 つしかないために、その個所で障害が起きると業務が止まってしまう弱点のことを指します。HA クラスタとは、ノードを複数台使用して冗長化することにより、システムの停止時間を最小限に抑え、業務の可用性 (availability)を向上させるクラスタシステムをいいます。


システムの停止が許されない基幹業務システムなどのダウンタイムがビジネスに大きな影響を与えてしまうシステムに、HA クラスタの導入が求められています。

共有ディスク型

- 共有ディスクが必要になるため高価
- 大規模データを扱うシステム向き

ミラーディスク型

- 共有ディスクが不要なので安価
- ミラーリングのためデータ量が多くない システム向き

図 1-1 HA クラスタ構成図

HA クラスタは、共有ディスク型とミラーディスク型に分けることができます。次ページからそれぞれのタイプについて説明します。

共有ディスク型

クラスタシステムでは、サーバ間でデータを引き継がなければなりません。このデータを、SAN 接続の FibreChannel ディスクアレイ装置のように複数のサーバからアクセス可能な外付け ディスク (共有ディスク) 上に置き、このディスクを介してサーバ間でデータを引き継ぐ形態を 共有ディスク型といいます。

業務アプリケーションを動かしているサーバ (現用系サーバ) で障害が発生した場合、クラスタシステムが障害を検出し、障害発生時に業務を引き継ぐサーバ (待機系サーバ) で業務アプリケーションを自動起動させ、業務を引き継がせます。これをフェイルオーバといいます。クラスタシステムによって引き継がれる業務は、ディスク、IP アドレス、アプリケーションなどのリソースと呼ばれるもので構成されています。

クラスタ化されていないシステムでは、アプリケーションをほかのサーバで再起動させると、クライアントは異なる IP アドレスに再接続しなければなりません。しかし、多くのクラスタシステムでは、業務単位にサーバに付与している IP ではなく別ネットワークの IP アドレス (仮想IP アドレス)を割り当てています。このため、クライアントは業務を行っているサーバが現用系か待機系かを意識する必要はなく、まるで同じサーバに接続しているように業務を継続できます。

現用系のダウンによりフェイルオーバが発生すると、共有ディスク上のデータは適切な終了処理が行われないまま待機系に引き継がれることになります。このため、待機系では引き継いだデータの論理チェックをする必要があります。これは一般に、クラスタ化されていないシステムでダウン後の再起動時に行われるのと同様の処理になります。例えば、データベースならばロールバックやロールフォワードの処理が必要になります。これらによって、クライアントは未コミットの SQL 文を再実行するだけで、業務を継続することができます。

障害発生後は、障害が検出されたサーバを物理的に切り離して修理後、クラスタシステムに接続すれば待機系として復帰できます。業務の継続性を重視する実際の運用の場合は、グループのフェイルバックを行わなくても良いです。どうしても、元のサーバで業務を行いたい場合は、グループの移動を実行してください。

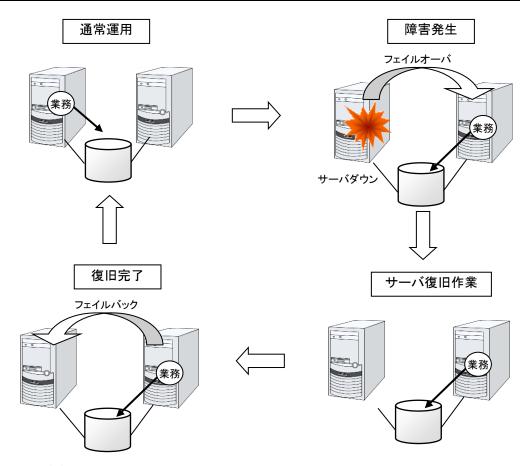


図 1-2 障害発生から復旧までの流れ

フェイルオーバ先のサーバのスペックが不十分、双方向スタンバイのため過負荷になる、などの理由で元のサーバで業務を行うのが望ましい場合には、元のノードの復旧作業が完了してから一旦業務を停止し、元のノードで業務を再開します。フェイルオーバしたグループを元のサーバに戻すことをフェイルバックといいます。

また、下記の図のように、業務が 1 つであり、待機系では業務が動作しないスタンバイ形態を 片方向スタンバイといいます。業務が 2 つ以上で、それぞれのノードが現用系かつ待機系で ある形態を双方向スタンバイといいます。

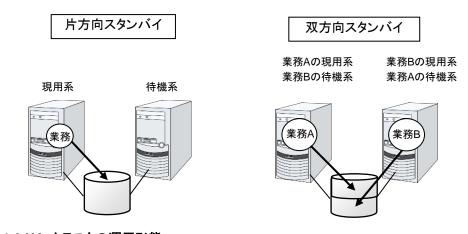
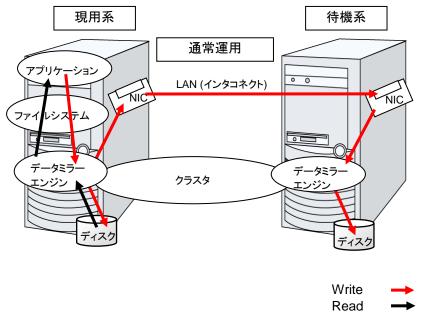


図 1-3 HA クラスタの運用形態


ミラーディスク型

前述の共有ディスク型は大規模なシステムに適していますが、共有ディスクはおおむね高価なためシステム構築のコストが膨らんでしまいます。そこで共有ディスクを使用せず、各サーバのディスクをサーバ間でミラーリングすることにより、同等の機能をより低価格で実現したクラスタシステムをミラーディスク型といいます。

しかし、サーバ間でデータをミラーリングする必要があるため、大量のデータを必要とする大規模システムには向きません。

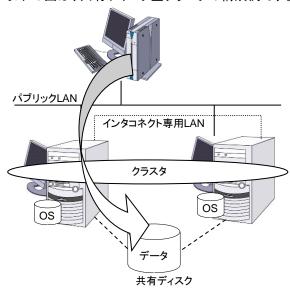
アプリケーションからの Write 要求が発生すると、データミラーエンジンはローカルディスクに データを書き込みます。書き込んだデータを、インタコネクトを通して待機系サーバにも Write 要求を振り分けます。インタコネクトとは、サーバ間をつなぐケーブルのことで、クラスタシステムではサーバの死活監視のために必要になります。データミラータイプでは死活監視に加えて データの転送に使用することがあります。待機系のデータミラーエンジンは、受け取ったデータを待機系のローカルディスクに書き込むことで、現用系と待機系間のデータを同期します。

アプリケーションからの Read 要求に対しては、単に現用系のディスクから読み出すだけです。

図 1-4 データミラーの仕組み

データミラーの応用例として、スナップショットバックアップの利用があります。データミラータイプのクラスタシステムは 2 カ所に共有のデータを持っているため、待機系のサーバをクラスタから切り離すだけで、スナップショットバックアップとしてデータを保存する運用が可能です。

HA クラスタの仕組みと問題点


次に、クラスタの実装と問題点について説明します。

システム構成

共有ディスク型クラスタは、ディスクアレイ装置をクラスタサーバ間で共有します。サーバ障害時には待機系サーバが共有ディスク上のデータを使用し業務を引き継ぎます。

ミラーディスク型クラスタは、クラスタサーバ上のデータディスクをネットワーク経由でミラーリングする構成です。サーバ障害時には待機系サーバ上のミラーデータを使用し業務を引き継ぎます。データのミラーリングは I/O 単位で行うため上位アプリケーションから見ると共有ディスクと同様に見えます。

以下の図は、共有ディスク型クラスタの構成例です。

図 1-5 システム構成

フェイルオーバ型クラスタは、運用形態により、次のように分類できます。

片方向スタンパイクラスタ

一方のサーバを運用系として業務を稼動させ、他方のサーバを待機系として業務を稼動させない運用形態です。最もシンプルな運用形態でフェイルオーバ後の性能劣化のない可用性の高いシステムを構築できます。

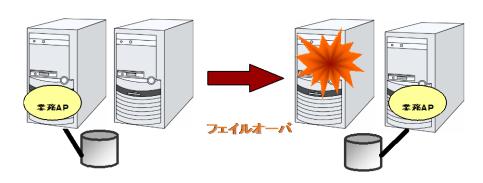


図 1-6 片方向スタンバイクラスタ

同一アプリケーション双方向スタンバイクラスタ

複数のサーバで同じ業務アプリケーションを稼動させ相互に待機する運用形態です。各業務アプリケーションは独立して動作します。フェイルオーバ時には 1 台のサーバ上で同一業務アプリケーションが複数動作することになりますので、このような運用が可能なアプリケーションでなければなりません。ある業務データを複数に分割できる場合に、アクセスしようとしているデータによってクライアントからの接続先サーバを変更することで、データ分割単位での負荷分散システムを構築できます。

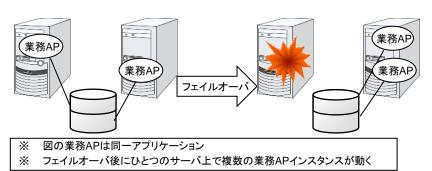


図 1-7 同一アプリケーション双方向スタンバイクラスタ

異種アプリケーション双方向スタンバイクラスタ

複数の種類の業務アプリケーションをそれぞれ異なるサーバで稼動させ相互に待機する運用形態です。フェイルオーバ時には 1 台のサーバ上に複数の業務アプリケーションが動作することになりますので、これらのアプリケーションは共存可能でなければなりません。業務単位での負荷分散システムを構築できます。

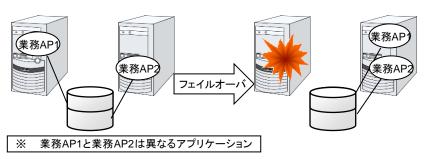


図 1-8 異種アプリケーション双方向スタンバイクラスタ

N+N 構成

ここまでの構成を応用し、より多くのノードを使用した構成に拡張することも可能です。下図は、3 種の業務を3 台のサーバで実行し、いざ問題が発生した時には1 台の待機系にその業務を引き継ぐという構成です。片方向スタンバイでは、正常時には待機系サーバが何も業務を行わないため、無駄なリソースの比率が1/2 になっていたのですが、この構成の場合無駄なリソースの比率が1/4 となり、コストの削減ができます。また、1 台までの異常発生であればパフォーマンスの低下もありません。

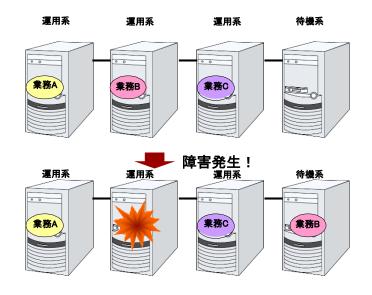


図 1-9 N + N 構成

障害検出のメカニズム

クラスタソフトウェアは、業務継続に問題をきたす障害を検出すると業務の引き継ぎ (フェイルオーバ) を実行します。フェイルオーバ処理の具体的な内容に入る前に、簡単にクラスタソフトウェアがどのように障害を検出するか見ておきましょう。

CLUSTERPRO はサーバ監視のために、定期的にサーバ同士で生存確認を行います。この 生存確認をハートビートと呼びます。

ハートビートとサーバの障害検出

クラスタシステムにおいて、検出すべき最も基本的な障害はクラスタを構成するサーバのダウンです。サーバの障害には、電源異常やメモリエラーなどのハードウェア障害や OS のパニックなどが含まれます。このような障害を検出するために、サーバの死活監視としてハートビートが使用されます。

ハートビートは、ping の応答を確認するような死活監視だけでもよいのですが、クラスタソフトウェアによっては、自サーバの状態情報などを相乗りさせて送るものもあります。クラスタソフトウェアはハートビートの送受信を行い、ハートビートの応答がない場合はそのサーバの障害とみなしてフェイルオーバ処理を開始します。ただし、サーバの高負荷などによりハートビートの送受信が遅延することも考慮し、サーバ障害と判断するまである程度の猶予時間が必要です。このため、実際に障害が発生した時間とクラスタソフトウェアが障害を検知する時間とにはタイムラグが生じます。

リソースの障害検出

業務の停止要因はクラスタを構成するサーバのダウンだけではありません。例えば、業務アプリケーションが使用するディスク装置や NIC の障害、もしくは業務アプリケーションそのものの障害などによっても業務は停止してしまいます。可用性を向上するためには、このようなリソースの障害も検出してフェイルオーバを実行しなければなりません。

リソース異常を検出する手法として、監視対象リソースが物理的なデバイスの場合は、実際にアクセスしてみるという方法が取られます。アプリケーションの監視では、アプリケーションプロセスそのものの死活監視のほか、業務に影響のない範囲でサービスポートを試してみるような手段も考えられます。

共有ディスクの排他制御

共有ディスク型のフェイルオーバクラスタでは、複数のサーバでディスク装置を物理的に共有します。一般的に、ファイルシステムはサーバ内にデータのキャッシュを保持することで、ディスク装置の物理的な I/O 性能の限界を超えるファイル I/O 性能を引き出しています。

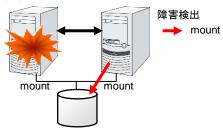
あるファイルシステムを複数のサーバから同時にマウントしてアクセスするとどうなるでしょうか?

通常のファイルシステムは、自分以外のサーバがディスク上のデータを更新するとは考えていないので、キャッシュとディスク上のデータとに矛盾を抱えることとなり、最終的にはデータを破壊します。フェイルオーバクラスタシステムでは、次に説明するネットワークパーティション状態などによる複数サーバからのファイルシステムの同時マウントを防ぐために、ディスク装置の排他制御を行っています。

ネットワークパーティション症状 (Split-brain-syndrome)

サーバ間をつなぐすべてのインタコネクトが切断されると、ハートビートによる死活監視だけではサーバのダウンと区別できません。この状態でサーバダウンとみなし、フェイルオーバ処理を実行し、複数のサーバでファイルシステムを同時にマウントすると、共有ディスク上のデータが破壊されてしまいます。

図 1-10 ネットワークパーティション症状


このような問題を「ネットワークパーティション症状」またはスプリットブレインシンドローム (Split-brain-syndrome) と呼びます。この問題を解決するため、フェイルオーバクラスタでは、すべてのインタコネクトが切断されたときに、確実に共有ディスク装置の排他制御を実現するためのさまざまな対応策が考えられています。

クラスタリソースの引き継ぎ

クラスタが管理するリソースにはディスク、IP アドレス、アプリケーションなどがあります。これらのクラスタリソースを引き継ぐための、フェイルオーバクラスタシステムの機能について説明します。

データの引き継ぎ

共有ディスク型クラスタでは、サーバ間で引き継ぐデータは共有ディスク装置上のパーティションに格納します。すなわち、データを引き継ぐとは、アプリケーションが使用するファイルが格納されているファイルシステムを健全なサーバ上でマウントしなおすことにほかなりません。共有ディスク装置は引き継ぐ先のサーバと物理的に接続されているので、クラスタソフトウェアが行うべきことはファイルシステムのマウントだけです。

図 1-11 データの引き継ぎ

単純な話のようですが、クラスタシステムを設計・構築するうえで注意しなければならない点があります。

1 つは、ファイルシステムやデータベースの復旧時間の問題です。引き継ごうとしているファイルは、障害が発生する直前までほかのサーバで使用され、もしかしたらまさに更新中であったかもしれません。このため、ファイルシステムによっては引き継ぐ際に整合性チェックが必要となりますし、データベースであればロールバック等の処理が必要となります。これは電源障害などでダウンした単体サーバを再起動した場合と同様です。このような復旧処理に長時間を要する場合、それがそのままフェイルオーバ時間 (業務の引き継ぎ時間) に追加されてしまい、システムの可用性を低下させる要因になります。

もう 1 つは、書き込み保証の問題です。アプリケーションが共有ディスクにデータを書き出す際に、通常はファイルシステムを介しての書き出しになりますが、アプリケーションが書き込みを完了していても、ファイルシステムがディスクキャッシュ上に保持しているだけで、共有ディスクへの書き込みを行っていなかった場合、この状態で現用系のサーバがダウンすると、ディスクキャッシュ上のデータは待機系に引き継がれないことになります。このため、障害発生時に確実に待機系に引き継ぐ必要のある大切なデータは、同期書き込みなどにより確実にディスクに書き込む必要があります。これは単体サーバがダウンした際にデータが揮発しないようにするのと同じです。つまり、待機系に引き継がれるのは共有ディスクに記録されたデータのみであり、ディスクキャッシュのようなメモリ上のデータは引き継がれないということを考慮してクラスタシステムを設計する必要があります。

IP アドレスの引き継ぎ

次にクラスタソフトウェアが行うことは、IP アドレスの引き継ぎです。フェイルオーバした際に、IP アドレスを引き継ぐことで、業務がどのサーバで動作しているのか、気にすることなく作業を行うことができます。クラスタソフトウェアは、そのための IP アドレスの引き継ぎを行います。

アプリケーションの引き継ぎ

クラスタソフトウェアが業務引き継ぎの最後に行う仕事は、アプリケーションの引き継ぎです。フォールトトレラントコンピュータ (FTC) とは異なり、一般的なフェイルオーバクラスタでは、アプリケーション実行中のメモリ内容を含むプロセス状態などを引き継ぎません。すなわち、障害が発生したサーバで実行していたアプリケーションを健全なサーバで再実行することでアプリケーションの引き継ぎを行います。

例えば、DB のインスタンスをフェイルオーバする場合、障害発生直前の状態で再開されるのではなく、一旦ダウンした状態から再起動した場合と同様にトランザクションのロールバック等が行われ、クライアントからも再接続が必要になります。このデータベース復旧に必要な時間は、DBMS のチェックポイントインターバルの設定などによってある程度の制御ができますが、一般的には数分程度必要となるようです。

多くのアプリケーションは再実行するだけで業務を再開できますが、障害発生後の業務復旧手順が必要なアプリケーションもあります。このようなアプリケーションのためにクラスタソフトウェアは業務復旧手順を記述できるよう、アプリケーションの起動の代わりにスクリプトを起動できるようになっています。スクリプト内には、スクリプトの実行要因や実行サーバなどの情報をもとに、必要に応じて更新途中であったファイルのクリーンアップなどの復旧手順を記述します。

フェイルオーバについての総括

ここまでの内容から、次のようなクラスタソフトの動作が分かると思います。

- ◆ 障害検出 (ハートビート/リソース監視)
- ◆ ネットワークパーティション状態の解決 (NP解決)
- ◆ クラスタ資源切り替え
 - データの引き継ぎ
 - IP アドレスの引き継ぎ
 - アプリケーションの引き継ぎ

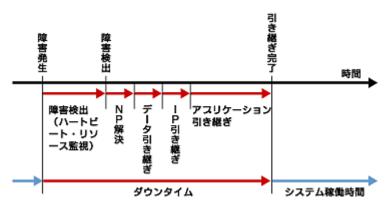


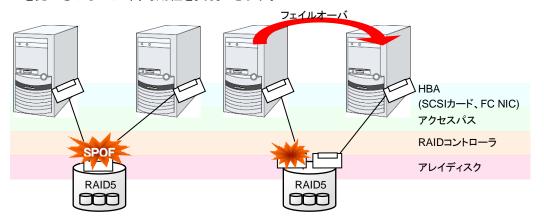
図 1-12 フェイルオーバタイムチャート

クラスタソフトウェアは、フェイルオーバ実現のため、これらの様々な処置を 1 つ 1 つ確実に、 短時間で実行することで、高可用性 (High Availability) を実現しているのです。

Single Point of Failure の排除

高可用性システムを構築するうえで、求められるもしくは目標とする可用性のレベルを把握することは重要です。これはすなわち、システムの稼働を阻害し得るさまざまな障害に対して、冗長構成をとることで稼働を継続したり、短い時間で稼働状態に復旧したりするなどの施策を費用対効果の面で検討し、システムを設計するということです。

Single Point of Failure (SPOF) とは、システム停止につながる部位を指す言葉であると前述しました。クラスタシステムではサーバの多重化を実現し、システムの SPOF を排除することができますが、共有ディスクなど、サーバ間で共有する部分については SPOF となり得ます。この共有部分を多重化もしくは排除するようシステム設計することが、高可用性システム構築の重要なポイントとなります。


クラスタシステムは可用性を向上させますが、フェイルオーバには数分程度のシステム切り替え時間が必要となります。従って、フェイルオーバ時間は可用性の低下要因の 1 つともいえます。このため、高可用性システムでは、まず単体サーバの可用性を高める ECC メモリや冗長電源などの技術が本来重要なのですが、ここでは単体サーバの可用性向上技術には触れず、クラスタシステムにおいて SPOF となりがちな下記の 3 つについて掘り下げて、どのような対策があるか見ていきたいと思います。

- ◆ 共有ディスク
- ◆ 共有ディスクへのアクセスパス
- ◆ LAN

共有ディスク

通常、共有ディスクはディスクアレイにより RAID を組むので、ディスクのベアドライブは SPOF となりません。しかし、RAID コントローラを内蔵するため、コントローラが問題となります。多くのクラスタシステムで採用されている共有ディスクではコントローラの二重化が可能になっています。

二重化された RAID コントローラの利点を生かすためには、通常は共有ディスクへのアクセスパスの二重化を行う必要があります。ただし、二重化された複数のコントローラから同時に同一の論理ディスクユニット (LUN) ヘアクセスできるような共有ディスクの場合、それぞれのコントローラにサーバを 1 台ずつ接続すればコントローラ異常発生時にノード間フェイルオーバを発生させることで高可用性を実現できます。

※HBA: Host Bus Adapter の略で、共有ディスク側ではなく、サーバ本体側のアダプタのことです。

図 1-13 共有ディスクの RAID コントローラとアクセスパスが SPOF となっている例 (左) と RAID コントローラとアクセスパスを分割した例

一方、共有ディスクを使用しないデータミラー型のフェイルオーバクラスタでは、すべてのデータをほかのサーバのディスクにミラーリングするため、SPOF が存在しない理想的なシステム構成を実現できます。ただし、次のような点について考慮する必要があります。

- ◆ ネットワークを介してデータをミラーリングすることによるディスク I/O 性能 (特に write 性能) の低下
- ◆ サーバ障害後の復旧における、ミラー再同期中のシステム性能 (ミラーコピーはバックグラウンドで実行される) の低下
- ◆ ミラー再同期時間 (ミラー再同期が完了するまでフェイルオーバできない)

すなわち、データの参照が多く、データ容量が多くないシステムにおいては、データミラー型の フェイルオーバクラスタを採用するというのも可用性を向上させるのに有効といえます。

共有ディスクへのアクセスパス

共有ディスク型クラスタの一般的な構成では、共有ディスクへのアクセスパスはクラスタを構成する各サーバで共有されます。SCSI を例に取れば、1 本の SCSI バス上に 2 台のサーバと共有ディスクを接続するということです。このため、共有ディスクへのアクセスパスの異常はシステム全体の停止要因となり得ます。

対策としては、共有ディスクへのアクセスパスを複数用意することで冗長構成とし、アプリケーションには共有ディスクへのアクセスパスが 1 本であるかのように見せることが考えられます。 これを実現するデバイスドライバをパスフェイルオーバドライバなどと呼びます。

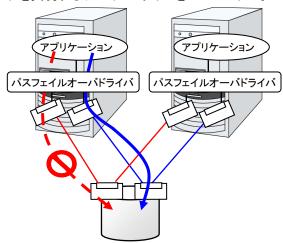
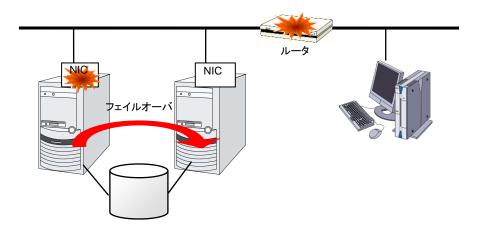



図 1-14 パスフェイルオーバドライバ

LAN

クラスタシステムに限らず、ネットワーク上で何らかのサービスを実行するシステムでは、LAN の障害はシステムの稼働を阻害する大きな要因です。クラスタシステムでは適切な設定を行えば NIC 障害時にノード間でフェイルオーバを発生させて可用性を高めることは可能ですが、クラスタシステムの外側のネットワーク機器が故障した場合はやはりシステムの稼働を阻害します。

図 1-15 ルータが SPOF となる例

このようなケースでは、LAN を冗長化することでシステムの可用性を高めます。クラスタシステムにおいても、LAN の可用性向上には単体サーバでの技術がそのまま利用可能です。例えば、予備のネットワーク機器の電源を入れずに準備しておき、故障した場合に手動で入れ替えるといった原始的な手法や、高機能のネットワーク機器を冗長配置してネットワーク経路を多重化することで自動的に経路を切り替える方法が考えられます。また、インテル社の ANSドライバのように NIC の冗長構成をサポートするドライバを利用するということも考えられます。

ロードバランス装置 (Load Balance Appliance) やファイアウォールサーバ (Firewall Appliance) も SPOF となりやすいネットワーク機器です。これらもまた、標準もしくはオプションソフトウェアを利用することで、フェイルオーバ構成を組めるようになっているのが普通です。同時にこれらの機器は、システム全体の非常に重要な位置に存在するケースが多いため、冗長構成をとることはほぼ必須と考えるべきです。

可用性を支える運用

運用前評価

システムトラブルの発生要因の多くは、設定ミスや運用保守に起因するものであるともいわれています。このことから考えても、高可用性システムを実現するうえで運用前の評価と障害復旧マニュアルの整備はシステムの安定稼働にとって重要です。評価の観点としては、実運用に合わせて、次のようなことを実践することが可用性向上のポイントとなります。

- ◆ 障害発生個所を洗い出し、対策を検討し、擬似障害評価を行い実証する
- ◆ クラスタの「一連の状態遷移」を想定した評価を行い、縮退運転時のパフォーマンスなど の検証を行う
- ◆ これらの評価をもとに、システム運用、障害復旧マニュアルを整備する

クラスタシステムの設計をシンプルにすることは、上記のような検証やマニュアルが単純化でき、システムの可用性向上のポイントとなることが分かると思います。

障害の監視

上記のような努力にもかかわらず障害は発生するものです。ハードウェアには経年劣化があり、ソフトウェアにはメモリリークなどの理由や設計当初のキャパシティプラニングを超えた運用をしてしまうことにより、長期間運用を続けると障害が発生することがあります。このため、ハードウェア、ソフトウェアの可用性向上と同時に、さらに重要となるのは障害を監視して障害発生時に適切に対処することです。万が一サーバに障害が発生した場合を例に取ると、クラスタシステムを組むことで数分の切り替え時間でシステムの稼働を継続できますが、そのまま放置しておけばシステムは冗長性を失い次の障害発生時にはクラスタシステムは何の意味もなさなくなってしまいます。

このため、障害が発生した場合、すぐさまシステム管理者は次の障害発生に備え、新たに発生した SPOF を取り除くなどの対処をしなければなりません。このようなシステム管理業務をサポートするうえで、リモートメンテナンスや障害の通報といった機能が重要になります。

以上、クラスタシステムを利用して高可用性を実現するうえで必要とされる周辺技術やそのほかのポイントについて説明しました。注意すべき点を簡単にまとめます。

- ◆ Single Point of Failure を排除または把握する
- ◆ 障害に強いシンプルな設計を行い、運用前評価に基づき運用・障害復旧手順のマニュア ルを整備する
- ◆ 発生した障害を早期に検出し適切に対処する

第 2 章 CLUSTERPRO について

本章では、CLUSTERPRO を構成するコンポーネントの説明と、クラスタシステムの設計から運用手順までの流れについて説明します。

本章で説明する項目は以下のとおりです。

•	CLUSTERPRO とは?······	34
	CLUSTERPRO の製品構成····································	
•	CLUSTERPRO のソフトウェア構成 ·······	36
•	ネットワークパーティション解決	39
•	フェイルオーバのしくみ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
•	リソースとは?	48
	CLUSTERPRO を始めよう!	_

CLUSTERPRO とは?

クラスタについて理解したところで、CLUSTERPRO の紹介を始めましょう。CLUSTERPRO とは、HA クラスタシステムを実現するためのソフトウェアです。

CLUSTERPRO の製品構成

CLUSTERPRO は大きく分けると 3 つのモジュールから構成されています。

◆ CLUSTERPRO Server

CLUSTERPRO の本体です。クラスタシステムを構成する各サーバマシンにインストールします。CLUSTERPRO Server には、CLUSTERPRO の高可用性機能の全てが包含されています。また、Cluster WebUI、WebManager、Builder のサーバ側機能も含まれます。

Cluster WebUI / WebManager

CLUSTERPRO の運用管理を行うための管理ツールです。ユーザインターフェイスとして Web ブラウザを利用します。実体は CLUSTERPRO Server に組み込まれていますが、操作は管理端末上の Web ブラウザで行うため、CLUSTERPRO Server とは区別されています。

◆ Builder

CLUSTERPRO の構成情報を作成するためのツールです。Cluster WebUI、WebManager と同じく、ユーザインターフェイスとして Web ブラウザを利用します。Builder を利用する端末上で、CLUSTERPRO Server とは別にインストールして利用するオフライン版とWebManager画面のツールバー左端のドロップダウンメニューから設定モードを選択するか、または [表示] メニューの [設定モード] をクリックして転換するオンライン版があります。通常インストール不要であり、オフラインで使用する場合のみ別途インストールします。

CLUSTERPRO のソフトウェア構成

CLUSTERPRO のソフトウェア構成は次の図のようになります。クラスタを構成するサーバ上には「CLUSTERPRO Server (CLUSTERPRO 本体)」をインストールします。Cluster WebUI、WebManager、Builder の本体機能は CLUSTERPRO Server に含まれるため、別途インストールする必要がありません。ただし、CLUSTERPRO Server にアクセスできない環境でBuilder を使用する場合は、オフライン版の Builder を PC にインストールする必要があります。Cluster WebUI、WebManager、Builder は管理 PC 上の Web ブラウザから利用するほか、クラスタを構成する各サーバ上の Web ブラウザでも利用できます。

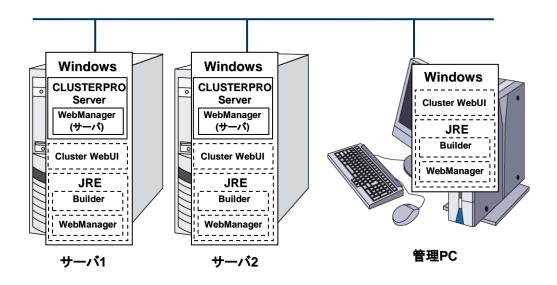


図 2-1 CLUSTERPRO のソフトウェア構成

注: JRE とは、Java Runtime Environment のことです。

CLUSTERPRO の障害監視のしくみ

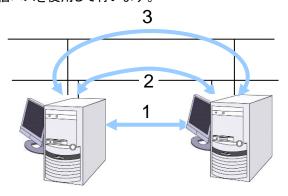
CLUSTERPRO では、サーバ監視、業務監視、内部監視の 3 つの監視を行うことで、迅速かつ確実な障害検出を実現しています。以下にその監視の詳細を示します。

サーバ監視とは

サーバ監視とはフェイルオーバ型クラスタシステムの最も基本的な監視機能で、クラスタを構成するサーバが停止していないかを監視する機能です。

サーバ監視(ハートビート)は以下の通信パスを使用して行います。

プライマリインタコネクト


クラスタサーバ間通信専用の LAN です。ハートビートを行うと 同時にサーバ間の情報交換に使 用します。

◆ セカンダリインタコネクト

クライアントとの通信に用いるパスとして使用します。サーバ間の情報交換や、インタコネクトのバックアップ用としても使用します。

◆ BMC

フェイルオーバ型クラスタを構成 するサーバ間を、BMC を介して ハートビート通信を行い、他サー バの生存を確認します。

- (1) プライマリインタコネクト
- (2) セカンダリインタコネクト
- (3) BMC

図 2-2 サーバ監視

業務監視とは

業務監視とは、業務アプリケーションそのものや業務が実行できない状態に陥る障害要因を 監視する機能です。

◆ 監視オプションによるアプリケーション/プロトコルのストール/結果異常監視

別途ライセンスの購入が必要となりますが、データベースアプリケーション (Oracle, DB2 等)、プロトコル (FTP, HTTP 等)、アプリケーションサーバ (WebSphere, WebLogic 等) のストール/結果異常監視を行うことができます。詳細は、『リファレンスガイド』の「第 6 モニタリソースの詳細」を参照してください。

◆ アプリケーションの死活監視

アプリケーションを起動用のリソース (アプリケーションリソース、サービスリソースと呼びます) により起動し、監視用のリソース (アプリケーション監視リソース、サービス監視リソースと呼びます) により定期的にプロセスの生存を確認することで実現します。業務停止要因が業務アプリケーションの異常終了である場合に有効です。

注1: CLUSTERPRO が直接起動したアプリケーションが監視対象の常駐プロセスを起動し終了してしまうようなアプリケーションでは、常駐プロセスの異常を検出することはできません。

注2: アプリケーションの内部状態の異常 (アプリケーションのストールや結果異常) を 検出することはできません。

◆ リソースの監視

CLUSTERPRO のモニタリソースによりクラスタリソース (ディスクパーティション、IP アドレスなど) やパブリック LAN の状態を監視することで実現します。業務停止要因が業務に必要なリソースの異常である場合に有効です。

内部監視とは

内部監視とは、CLUSTERPRO 内部のモジュール間相互監視です。CLUSTERPRO の各 監視機能が正常に動作していることを監視します。

次のような監視を CLUSTERPRO 内部で行っています。

◆ CLUSTERPRO プロセスの死活監視

監視できる障害と監視できない障害

CLUSTERPRO には、監視できる障害とできない障害があります。クラスタシステム構築時、運用時に、どのような障害が検出可能なのか、または検出できないのかを把握しておくことが重要です。

サーバ監視で検出できる障害とできない障害

監視条件: 障害サーバからのハートビートが途絶

- ◆ 監視できる障害の例
 - ハードウェア障害 (OS が継続動作できないもの)
 - STOP エラー
- ◆ 監視できない障害の例
 - OS の部分的な機能障害 (マウス/キーボードのみが動作しない等)

業務監視で検出できる障害とできない障害

監視条件: 障害アプリケーションの消滅、継続的なリソース異常、あるネットワーク装置への通信路切断

- ◆ 監視できる障害の例
 - ・ アプリケーションの異常終了
 - 共有ディスクへのアクセス障害 (HBA の故障など)
 - パブリック LAN NIC の故障
- ◆ 監視できない障害の例
 - ・ アプリケーションのストール/結果異常

アプリケーションのストール/結果異常を CLUSTERPRO で直接監視することはできません*1が、アプリケーションを監視し異常検出時に自分自身を終了するプログラムを作成し、そのプログラムをアプリケーションリソースで起動、アプリケーション監視リソースで監視することで、フェイルオーバを発生させることは可能です。

^{※1} 監視オプションで取り扱う、データベースアプリケーション (Oracle,DB2等)、プロトコル (FTP,HTTP等) 、 アプリケーションサーバ (Websphere, Weblogic等) については、ストール/結果異常監視を行うことがで きます。

ネットワークパーティション解決

CLUSTERPRO は、あるサーバからのハートビート途絶を検出すると、その原因が本当にサーバ障害なのか、あるいはネットワークパーティション状態によるものなのかの判別を行います。サーバ障害と判断した場合は、フェイルオーバ(健全なサーバ上で各種リソースを活性化し業務アプリケーションを起動)を実行しますが、ネットワークパーティション状態と判断した場合には、業務継続よりもデータ保護を優先させるため、緊急シャットダウンなどの処理を実施します。

ネットワークパーティション解決方式には下記の方法があります。

- ◆ COM 方式
- ◆ PING 方式
- ◆ 共有ディスク方式
- ◆ COM + 共有ディスク方式
- ◆ PING + 共有ディスク方式
- ◆ 多数決方式
- ◆ ネットワークパーティション解決しない

関連情報: ネットワークパーティション解決方法の設定についての詳細は、『リファレンスガイド』の「第 8 章 ネットワークパーティション解決リソースの詳細」を参照してください。

フェイルオーバのしくみ

CLUSTERPRO は他サーバからのハートビートの途絶を検出すると、フェイルオーバ開始前にサーバの障害かネットワークパーティション状態かを判別します。この後、健全なサーバ上で各種リソースを活性化し業務アプリケーションを起動することでフェイルオーバを実行します。

このとき、同時に移動するリソースの集まりをフェイルオーバグループと呼びます。フェイルオーバグループは利用者から見た場合、仮想的なコンピュータとみなすことができます。

注:クラスタシステムでは、アプリケーションを健全なノードで起動しなおすことでフェイルオーバを実行します。このため、アプリケーションのメモリ上に格納されている実行状態をフェイルオーバすることはできません。

障害発生からフェイルオーバ完了までの時間は数分間必要です。以下にタイムチャートを示します。

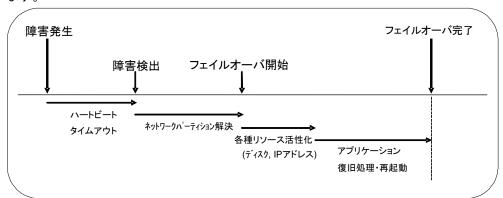


図 2-3 フェイルオーバのタイムチャート

◆ ハートビートタイムアウト

- 業務を実行しているサーバの障害発生後、待機系がその障害を検出するまでの時間です。
- 業務の負荷等による遅延も考慮して、クラスタプロパティの設定値を調整します。 (既定値では 30 秒です。)

◆ ネットワークパーティション解決

- 相手サーバからのハートビートの途絶 (ハートビートタイムアウト) が、ネットワーク パーティション状態によるものか、実際に相手サーバが障害を起こしたのかを確認するための時間です。
- ネットワークパーティション方式として共有ディスク方式が指定されている場合には、ディスク I/O の遅延を考慮した待ち時間が必要なため、既定値の設定で 30 秒~60 秒程の時間を要します。この所要時間はクラスタパーティションへのアクセス時間や、ハートビートタイムアウト値などに連動して変化します。その他の方式の場合、通常はほぼ瞬時に確認が完了します。

◆ 各種リソース活性化

- 業務で必要なリソースを活性化するための時間です。
- 一般的な設定では数秒で活性化しますが、フェイルオーバグループに登録されている資源の種類や数によって必要時間は変化します。(詳しくは、『インストール&設定ガイド』を参照してください。)

◆ アプリケーション復旧処理・再起動

- 業務で使用するアプリケーションの起動に要する時間です。データベースのロール バック/ロールフォワードなどのデータ復旧処理の時間も含まれます。
- ロールバック/ロールフォワード時間などはチェックポイントインターバルの調整である 程度予測可能です。詳しくは、各ソフトウェア製品のドキュメントを参照してください。

CLUSTERPRO で構築する共有ディスク型クラスタのハードウェア構成

共有ディスク型クラスタの CLUSTERPRO の HW 構成は下図のようになります。

サーバ間の通信用に

- ♦ NIC を 2 枚 (1 枚は外部との通信と流用、1 枚は CLUSTERPRO 専用)
- ◆ RS-232C ケーブルで接続された COM ポート
- ◆ 共有ディスクの特定領域

を利用する構成が一般的です。

共有ディスクとの接続インターフェイスは SCSI や Fibre Channel、iSCSI ですが、最近は Fibre Channel か iSCSI による接続が一般的です。

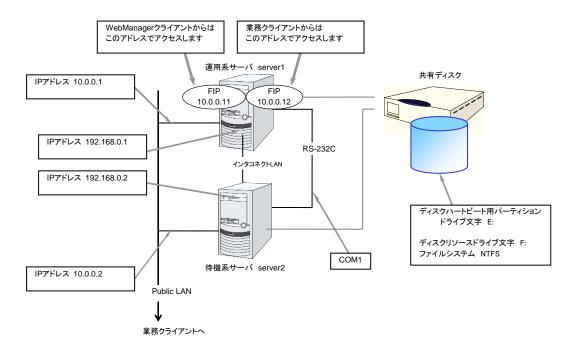
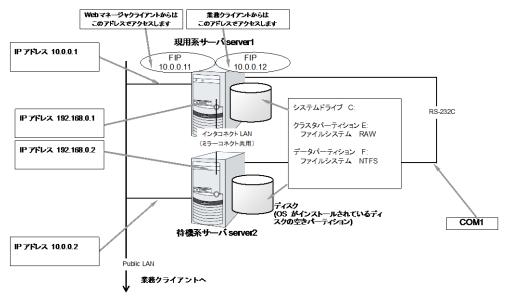


図 2-4 共有ディスク使用時のクラスタ環境のサンプル

上記は、共有ディスク使用時のクラスタ環境のサンプルです。


CLUSTERPROで構築するミラーディスク型クラスタのハードウェア構成

各サーバのディスク上のパーティションをミラーリングすることによって、共有ディスク装置の代替とする構成です。共有ディスク型に比べて小規模で低予算のシステムに向いています。

注: ミラーディスクを使用するには、Replicator オプションまたは Replicator DR オプションをご購入いただく必要があります。

ミラーディスクデータコピー用のネットワークが必要となりますが、通常、インタコネクト (CLUSTERPRO の内部通信用 NIC) で兼用します。

CLUSTERPRO で構築するデータミラー型クラスタのハードウェア構成は、下図のような構成になります。

図 2-5 ミラーディスク使用時のクラスタ環境のサンプル

上記は、ミラーディスク使用時のクラスタ環境のサンプル (OS がインストールされているディスクにクラスタパーティション、データパーティションを確保する場合)です。

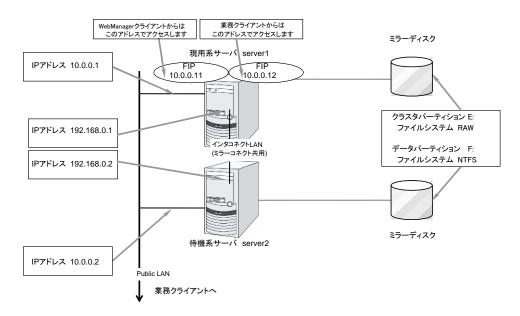


図 2-6 ミラーディスク使用時のクラスタ環境のサンプル

ミラーディスク使用時のクラスタ環境のサンプル (クラスタパーティション、データパーティション 用のディスクを用意する場合) です。

CLUSTERPRO で構築するハイブリッドディスク型クラスタのハードウェ ア構成

共有ディスク型とミラーディスク型を組み合わせ、共有ディスク上のパーティションをミラーリングすることによって、共有ディスク装置の障害に対しても業務継続を可能とする構成です。リモートサイト間でミラーリングすることにより、災害対策としても利用できます。

注: ハイブリッドディスクを使用するには、Replicator DR オプションをご購入いただく必要があります。

ミラーディスクの場合と同様、データコピー用のネットワークが必要となりますが、通常、インタコネクト (CLUSTERPRO の内部通信用 NIC) で兼用します。

CLUSTERPRO で構築するハイブリッドディスク型クラスタのハードウェア構成は、下図のようになります。

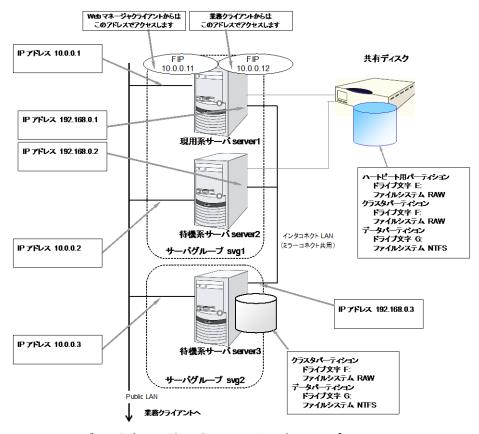


図 2-7 ハイブリッドディスク使用時のクラスタ環境のサンプル

上記は、同じネットワーク内で共有ディスクをミラーリングする場合のクラスタ環境のサンプルです。ハイブリッドディスクでは同じ共有ディスク装置に接続されたサーバグループの間でミラーリングを行いますが、上記の例では共有ディスクを server3 のローカルディスクにミラーリングするため、待機系サーバグループ svg2 はメンバサーバが server3 のみとなります。

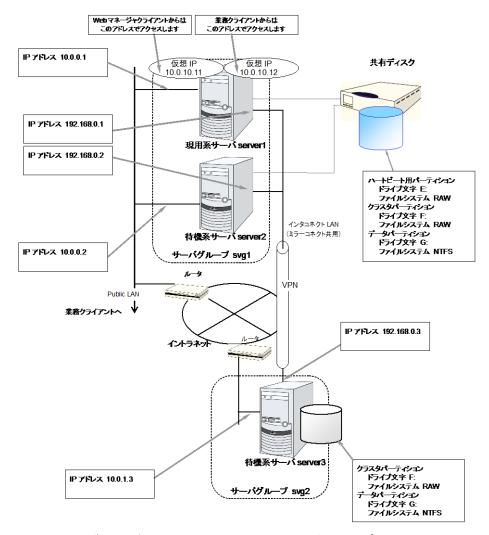


図 2-8 ハイブリッドディスク使用時の遠隔クラスタ環境のサンプル

上記は、リモートサイト間でミラーリングを行う場合のクラスタ環境のサンプルです。この例では Public LAN のネットワークセグメントがサーバグループ間で異なるため、フローティング IP アドレスではなく仮想 IP アドレスを使用しています。仮想 IP アドレスを使用する場合、途中のルータは全てホストルートを伝播するように設定されている必要があります。また、ミラーのモードを非同期にし、データ圧縮機能を有効にすることをお勧めします。

クラスタオブジェクトとは?

CLUSTERPRO では各種リソースを下のような構成で管理しています。

- ◆ クラスタオブジェクト 一群のサーバをまとめたクラスタシステムです。
- ◆ サーバオブジェクト 実体サーバを示すオブジェクトで、クラスタオブジェクトに属します。
- ◆ サーバグループオブジェクト サーバを束ねるオブジェクトで、クラスタオブジェクトに属します。ハイブリッドディスクリ ソースを使用する場合に必要です。
- ◆ ハートビートリソースオブジェクト 実体サーバの NW 部分を示すオブジェクトで、サーバオブジェクトに属します。
- ◆ ネットワークパーティション解決リソースオブジェクト ネットワークパーティション解決機構を示すオブジェクトで、サーバオブジェクトに属します。
- ◆ グループオブジェクト 仮想のサーバを示すオブジェクトで、クラスタオブジェクトに属します。
- ◆ グループリソースオブジェクト 仮想サーバの持つ資源 (NW、ディスク) を示すオブジェクトでグループオブジェクトに属します。
- ◆ モニタリソースオブジェクト 監視機構を示すオブジェクトで、クラスタオブジェクトに属します。

リソースとは?

CLUSTERPRO では、監視する側とされる側の対象をすべてリソースと呼び、監視する側とされる側のリソースを分類して管理します。このことにより、より明確に監視/被監視の対象を区別できるほか、クラスタ構築や障害検出時の対応が容易になります。リソースはハートビートリソース、ネットワークパーティション解決リソース、グループリソース、モニタリソースの 4 つに分類されます。以下にその概略を示します。

関連情報: 各リソースの詳細については、『リファレンスガイド セクション II 』を参照してください。

ハートビートリソース

サーバ間で、お互いの生存を確認するためのリソースです。

以下に現在サポートされているハートビートリソースを示します。

- ◆ LAN ハートビートリソース Ethernet を利用した通信を示します。
- ◆ BMC ハートビートリソース BMC 経由で Ethernet を利用した通信を示します。BMC のハードウェアおよびファームウェアが対応している場合のみ利用可能です。

ネットワークパーティション解決リソース

ネットワークパーティション状態を解決するためのリソースを示します。

- ◆ COM ネットワークパーティション解決リソース COM 方式によるネットワークパーティション解決リソースです。
- ◆ DISK ネットワークパーティション解決リソース DISK 方式によるネットワークパーティション解決リソースです。共有ディスク構成 の場合のみ利用可能です。
- ◆ PING ネットワークパーティション解決リソース PING 方式によるネットワークパーティション解決リソースです。
- ◆ 多数決ネットワークパーティション解決リソース 多数決方式によるネットワークパーティション解決リソースです。

グループリソース

フェイルオーバを行う際の単位となる、フェイルオーバグループを構成するリソースです。 以下に現在サポートされているグループリソースを示します。

- ◆ アプリケーションリソース (appli) アプリケーション (ユーザ作成アプリケーションを含む) を起動/停止するための仕組みを 提供します。
- ◆ フローティング IP リソース (fip) 仮想的な IP アドレスを提供します。クライアントからは一般の IP アドレスと同様にアクセス可能です。
- ◆ ミラーディスクリソース (md) ローカルディスク上の特定のパーティションのミラーリングとアクセス制御を行う機能を提供します。ミラーディスク構成の場合のみ利用可能です。
- ◆ レジストリ同期リソース (regsync) クラスタを構成するサーバ間でアプリケーションやサービスを同一設定で動作させるために、複数サーバの特定レジストリを同期する仕組みを提供します。
- ◆ スクリプトリソース (script) ユーザ作成スクリプト等のスクリプト (BAT) を起動/停止するための仕組みを提供します。
- ◆ ディスクリソース (sd) 共有ディスク上の特定のパーティションのアクセス制御を行う機能を提供します。共有ディ スク装置が接続されている場合にのみ利用可能です。
- ◆ サービスリソース (service) データベースや Web 等のサービスを起動/停止するための仕組みを提供します。
- ◆ プリントスプーラリソース (spool) プリントスプーラをフェイルオーバするための機能を提供します
- ◆ 仮想コンピュータ名リソース (vcom) 仮想的なコンピュータ名を提供します。クライアントからは一般のコンピュータ名と同様に アクセス可能です。
- ◆ ダイナミックDNSリソース (ddns)

 Dynamic DNS サーバに仮想ホスト名と活性サーバの IP アドレスを登録します。
- ◆ 仮想 IP リソース (vip) 仮想的な IP アドレスを提供します。クライアントからは一般の IP アドレスと同様にアクセス可能です。ネットワークアドレスの異なるセグメント間で遠隔クラスタを構成する場合に使用します。
- ◆ CIFS リソース (cifs) 共有ディスク/ミラーディスク上のフォルダを共有公開するための機能を提供します。
- ◆ NAS リソース (nas) ファイルサーバ上の共有フォルダをネットワークドライブとしてマウントするための機能を 提供します。
- ◆ ハイブリッドディスクリソース (hd) ディスクリソースとミラーディスクリソースを組み合わせたリソースで、共有ディスクまたは ローカルディスク上の特定のパーティションのミラーリングとアクセス制御を行う機能を提供します。

- ◆ 仮想マシンリソース (vm) 仮想マシンの起動、停止、マイグレーションを行います。
- ◆ AWS Elastic IPリソース (awseip)
 AWS 上で CLUSTERPRO を利用する場合、EIP を付与する仕組みを提供します。
- ◆ AWS 仮想IPリソース (awsvip)
 AWS 上で CLUSTERPRO を利用する場合、VIP を付与する仕組みを提供します。
- ◆ AWS DNS リソース (awsdns) AWS 上で CLUSTERPRO を利用する場合、Amazon Route 53 に仮想ホスト名と活性サーバの IP アドレスを登録します。
- ◆ Azure プローブポートリソース (azurepp)
 Microsoft Azure 上で CLUSTERPRO を利用する場合、業務が稼働するノードで特定のポートを開放する仕組みを提供します。
- ◆ Azure DNS リソース (azuredns)
 Microsoft Azure 上で CLUSTERPRO を利用する場合、Azure DNS に仮想ホスト名と
 活性サーバの IP アドレスを登録します。

注: ミラーディスクリソースを使用するためには、『CLUSTERPRO X Replicator』または『CLUSTERPRO X Replicator DR』のライセンスが必要です。

ハイブリッドディスクリソースを使用するためには、『CLUSTERPRO X Replicator DR』のライセンスが必要です。

ライセンスが登録されていないリソースは、Builder(オンライン版)の一覧に表示されません。

モニタリソース

クラスタシステム内で、監視を行う主体であるリソースです。

以下に現在サポートされているモニタリソースを示します。

- ◆ アプリケーション監視リソース (appliw) アプリケーションリソースで起動したプロセスの死活監視機能を提供します。
- ◆ ディスク RW 監視リソース (diskw) ファイルシステムへの監視機構を提供します。また、ファイルシステム I/O ストール時に 意図的な STOP エラーまたは、HW リセットによりフェイルオーバを実施する機能を提 供します。共有ディスクのファイルシステムへの監視にも利用できます。
- ◆ フローティング IP 監視リソース (fipw) フローティング IP リソースで起動した IP アドレスの監視機構を提供します。
- ◆ IP 監視リソース (ipw) ネットワークの疎通を監視する機構を提供します
- ◆ ミラーディスク監視リソース (mdw) ミラーディスクの監視機構を提供します。
- ◆ ミラーコネクト監視リソース (mdnw) ミラーコネクトの監視機構を提供します。
- ◆ NIC Link Up/Down 監視リソース (miiw) LAN ケーブルのリンクステータスの監視機構を提供します。
- ◆ マルチターゲット監視リソース (mtw) 複数のモニタリソースを束ねたステータスを提供します。
- ◆ レジストリ同期監視リソース (regsyncw) レジストリ同期リソースによる同期処理の監視機構を提供します。
- ◆ ディスク TUR 監視リソース (sdw) SCSI の [TestUnitReady] コマンドにより共有ディスクへのアクセスパスの動作を監視する機構を提供します。FibreChannel の共有ディスクに対しても使用できます。
- ◆ サービス監視リソース (servicew) サービスリソースで起動したプロセスの死活監視機能を提供します。
- ◆ プリントスプーラ監視リソース (spoolw) プリントスプーラリソースで起動したプリントスプーラの監視機構を提供します。
- ◆ 仮想コンピュータ名監視リソース (vcomw) 仮想コンピュータ名リソースで起動した仮想コンピュータの監視機構を提供します。
- ◆ ダイナミックDNS監視リソース (ddnsw) 定期的に Dynamic DNS サーバに仮想ホスト名と活性サーバの IP アドレスを登録します。
- ◆ 仮想 IP 監視リソース (vipw)仮想 IP リソースで起動した IP アドレスの監視機構を提供します。
- ◆ CIFS 監視リソース (cifsw) CIFS リソースで公開した共有フォルダの監視機構を提供します。
- ◆ NAS 監視リソース (nasw) NAS リソースでマウントしたネットワークドライブの監視機構を提供します。

- ◆ ハイブリッドディスク監視リソース (hdw) ハイブリッドディスクの監視機構を提供します。
- ◆ ハイブリッドディスク TUR 監視リソース (hdtw) SCSI の [TestUnitReady] コマンドにより、ハイブリッドディスクとして使用する共有ディスク装置へのアクセスパスの動作を監視する機構を提供します。FibreChannel の共有ディスクに対しても使用できます。
- ◆ カスタム監視リソース (genw) 監視処理を行うコマンドやスクリプトがある場合に、その動作結果によりシステムを監視 する機構を提供します。
- ◆ プロセス名監視リソース (psw) プロセス名を指定することで、任意のプロセスの死活監視機能を提供します。
- ◆ DB2 監視リソース (db2w)IBM DB2 データベースへの監視機構を提供します。
- ◆ ODBC 監視リソース (odbcw) ODBC でアクセス可能なデータベースへの監視機構を提供します。
- ◆ Oracle 監視リソース (oraclew)Oracle データベースへの監視機構を提供します。
- ◆ PostgreSQL 監視リソース (psqlw)PostgreSQL データベースへの監視機構を提供します。
- ◆ SQL Server 監視リソース (sqlserverw) SQL Server データベースへの監視機構を提供します。
- ◆ FTP 監視リソース (ftpw) FTP サーバへの監視機構を提供します。
- ◆ HTTP 監視リソース (httpw) HTTP サーバへの監視機構を提供します。
- ◆ IMAP4 監視リソース (imap4w) IMAP サーバへの監視機構を提供します。
- ◆ POP3 監視リソース (pop3w) POP サーバへの監視機構を提供します。
- ◆ SMTP 監視リソース (smtpw) SMTP サーバへの監視機構を提供します。
- ◆ Tuxedo 監視リソース (tuxw)
 Tuxedo アプリケーションサーバへの監視機構を提供します。
- ◆ Websphere 監視リソース (wasw) WebSphere アプリケーションサーバへの監視機構を提供します。
- ◆ Weblogic 監視リソース(wlsw) WebLogic アプリケーションサーバへの監視機構を提供します。
- ◆ WebOTX 監視リソース (otxw) WebOTX アプリケーションサーバへの監視機構を提供します。
- ◆ 仮想マシン監視リソース (vmw) 仮想マシンリソースで起動した仮想マシンの監視機構を提供します。

- ◆ 外部連携監視リソース (mrw)
 - "異常発生通知受信時に実行する異常時動作の設定"と"異常発生通知の WebManager 表示" を実現するためのモニタリソースです。
- ◆ JVM 監視リソース (jraw) Java VM への監視機構を提供します。
- ◆ システム監視リソース (sraw) プロセス個別のリソース、システム全体のリソース、ディスク使用率の監視機構を提供します。
- ◆ ユーザ空間監視リソース (userw) ユーザ空間のストール監視機構を提供します。また、ユーザ空間ストール時に意図的な STOP エラーまたは、HW リセットによりフェイルオーバを実施する機能を提供します。
- ◆ AWS Elastic IP監視リソース (awseipw)
 AWS Elastic IPリソースで付与した Elastic IP(以下、EIP)の監視機構を提供します。
- ◆ AWS 仮想IP監視リソース (awsvipw) AWS 仮想IPリソースで付与した仮想IP(以下、VIP)の監視機構を提供します。
- ◆ AWS AZ監視リソース (awsazw) Availability Zone(以下、AZ) の監視機構を提供します。
- ◆ AWS DNS 監視リソース (awsdnsw) AWS DNS リソースで付与した仮想ホスト名と IP アドレスの監視機構を提供します。
- ◆ Azure プローブポート監視リソース (azureppw)
 Azure プローブポートリソースが起動しているノードに対して、死活監視のためのポートの監視機構を提供します。
- ◆ Azure ロードバランス監視リソース (azurelbw)
 Azure プローブポートリソースが起動していないノードに対して、プローブ ポートと同じ
 ポート番号が開放されていないかの監視機構を提供します。
- ◆ Azure DNS 監視リソース (azurednsw)
 Azure DNS リソースで付与した仮想ホスト名と IP アドレスの監視機構を提供します。

注: DB2 監視リソース、ODBC 監視リソース、Oracle 監視リソース、PostgreSQL 監視リソース、SQL Server 監視リソースを使用するためには、『CLUSTERPRO X Database Agent』のライセンスが必要です。

FTP 監視リソース、HTTP 監視リソース、IMAP4 監視リソース、POP3 監視リソース、SMTP 監視リソースを使用するためには、『CLUSTERPRO X Internet Server Agent』のライセンスが必要です。

Tuxedo 監視リソース、Weblogic 監視リソース、Websphere 監視リソース、WebOTX 監視リソースを使用するためには、『CLUSTERPRO X Application Server Agent』のライセンスが必要です。

JVM 監視リソースを使用するためには『CLUSTERPRO X Java Resource Agent』のライセンスが必要です。

システム監視リソースを使用するためには『CLUSTETRPRO X System Resoruce Agent』の ライセンスが必要です。

ライセンスが登録されていない監視リソースは、Builder(オンライン版)の一覧に表示されません。

CLUSTERPRO を始めよう!

以上で CLUSTERPRO の簡単な説明が終了しました。

以降は、以下の流れに従い、対応するガイドを読み進めながら CLUSTERPRO を使用した クラスタシステムの構築を行ってください。

最新情報の確認

本ガイドのセクション II『リリースノート (CLUSTERPRO 最新情報)』を参照してください。

クラスタシステムの設計

『インストール&設定ガイド』の「セクション I クラスタシステムの設計」および 『リファレンスガイド』の「セクション II リソース詳細」を参照してください。

クラスタシステムの構築

『インストール&設定ガイド』の全編を参照してください。

クラスタシステムの運用開始後の障害対応

『リファレンスガイド』の「セクション Ⅲ メンテナンス情報」を参照してください。

セクション II リリースノート (CLUSTERPRO 最新情報)

このセクションでは、CLUSTERPRO の最新情報を記載します。サポートするハードウェアやソフトウェアについての最新の詳細情報を記載します。また、制限事項や、既知の問題とその回避策についても説明します。

- 第3章 CLUSTERPRO の動作環境
- 第4章 最新バージョン情報
- 第5章 注意制限事項

第3章 CLUSTERPRO の動作環境

本章では、CLUSTERPRO の動作環境について説明します。 本章で説明する項目は以下の通りです。

•	ハードウェア動作環境・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
	CLUSTERPRO Server の動作環境 ····································	
•	Cluster WebUI の動作環境····································	71
•	Builder の動作環境····································	72
•	WebManager の動作環境 ····································	73
•	統合 WebManager の動作環境 ····································	

ハードウェア動作環境

CLUSTERPRO は以下のアーキテクチャのサーバで動作します。

◆ x86_64

必要スペック

CLUSTERPRO Server に必要なスペックは下記の通りです。

- ◆ RS-232C ポート 1 つ (3 ノード以上のクラスタを構築する場合は不要)
- ◆ Ethernet ポート 2 つ以上
- ◆ 共有ディスク、ミラー用ディスクまたはミラー用空きパーティション (ミラーディスクを使用する場合)
- ◆ CD-ROM ドライブ

オフラインで Builder を使用する場合は、クラスタ構成情報のやりとりのため以下が必要です (オンラインの場合は不要)。

◆ CLUSTERPRO Server をインストール済のサーバマシンとファイルを共有する手段

Express5800/A1080a,A1040a シリーズとの連携に対応したサーバ

BMC ハートビートリソースおよび外部連携モニタリソースの Express5800/A1080a,A1040a シリーズ連携機能が利用可能なサーバは下記の通りです。本機能は下記のサーバ以外では利用できません。

サーバ	備考
Express5800/A1080a-E	最新のファームウェアにアップデートしてください。
Express5800/A1080a-D	最新のファームウェアにアップデートしてください。
Express5800/A1080a-S	最新のファームウェアにアップデートしてください。
Express5800/A1040a	最新のファームウェアにアップデートしてください。

CLUSTERPRO Server の動作環境

対応 OS

CLUSTERPRO は、下記の OS に対応しています。

x86_64 版

os	備考
Windows Server 2012 Standard	
Windows Server 2012 Datacenter	
Windows Server 2012 R2 Standard	
Windows Server 2012 R2 Datacenter	
Windows Server 2016 Standard	
Windows Server 2016 Datacenter	
Windows Server, version 1709 Standard	
Windows Server, version 1709 Datacenter	

必要メモリ容量とディスクサイズ

必要メモリサイズ		必要ディスクサイズ		備考
ユーザモード	kernel モ ード	インストール直後	運用時	Cr. mu
	32MB + 4MB(*2)×(ミラーディス クリソース数+ハイブリッ ドディスクリソース数)	80MB	2.0GB	

(*1) オプション類を除く

(*2) ミラーディスクリソースおよびハイブリッドディスクリソース使用時に必要なメモリサイズで す

非同期方式に変更時やキューサイズ変更時および差分ビットマップサイズ変更時は、構成時に指定したサイズのメモリが追加で必要になります。また、ミラーディスクへの I/O に対応してメモリを使用するため、ディスク負荷の増加にともない使用するメモリサイズも増加します。

監視オプションの動作確認済アプリケーション情報

監視オプションは、下記のアプリケーションを監視対象として動作確認しています。

x86_64 版

モニタリソース	監視対象の アプリケーション	CLUSTERPRO Version	備考
Oracle 監視	Oracle Database12c Release 1 (12.1)	12.00~	
Oracle 监祝	Oracle Database 12c Release 2 (12.2)	12.00~	
	DB2 V10.5	12.00~	
DB2 監視	DB2 V11.1	12.00~	
	PostgreSQL 9.3	12.00~	
	PostgreSQL 9.4	12.00~	
	PostgreSQL 9.5	12.00~	
Dooters COL 医知	PostgreSQL 9.6	12.00~	
PostgreSQL 監視	PostgreSQL 10	12.00~	
	PowerGres on Windows V9.1	12.00~	
	PowerGres on Windows V9.4	12.00~	
	PowerGres on Windows V9.6	12.00~	
	SQL Server 2014	12.00~	
SQL Server 監視	SQL Server 2016	12.00~	
	SQL Server 2017	12.00~	
Tuxedo 監視	Tuxedo 12c Release 2 (12.1.3)	12.00~	
Moblegie 55-49	WebLogic Server 11g R1	12.00~	
Weblogic 監視	WebLogic Server 11g R2	12.00~	

	WebLogic Server 12c R2 (12.2.1)	12.00~
	Weblogic Server 12c Kz (12.2.1)	12.00~
	WebSphere Application Server 8.5	12.00~
Websphere 監視	WebSphere Application Server 8.5.5	12.00~
	WebSphere Application Server 9.0	12.00~
	WebOTX Application Server V9.1	12.00~
	WebOTX Application Server V9.2	12.00~
WebOTX 監視	WebOTX Application Server V9.3	12.00~
NGDOIN MIT	WebOTX Application Server V9.4	12.00~
	WebOTX Application Server V9.5	12.00~
	WebOTX Application Server V10.1	12.00~
	WebLogic Server 11g R1	12.00~
	WebLogic Server 11g R2	12.00~
	WebLogic Server 12c R2 (12.2.1)	12.00~
	WebOTX Application Server V9.1	12.00~
	WebOTX Application Server V9.2	12.00~
JVM監視	WebOTX Application Server V9.3	12.00~
	WebOTX Application Server V9.4	12.00~
	WebOTX Application Server V9.5	12.00~
	WebOTX Application Server V10.1	12.00~
	WebOTX Enterprise Service Bus V8.4	12.00~
	WebOTX Enterprise Service Bus V8.5	12.00~
	Apache Tomcat 8.0	12.00~

	Apache Tomcat 8.5	12.00~	
	Apache Tomcat 9.0	12.00~	
	WebSAM SVF for PDF 9.1	12.00~	
	WebSAM SVF for PDF 9.2	12.00~	
WebSAM Report Director Enterprise 9.1		12.00~	
WebSAM Report Director Enterprise 9.2		12.00~	
	WebSAM Universal Connect/X 9.1	12.00~	
	WebSAM Universal Connect/X 9.2	12.00~	
システム監視	バージョン指定無し	12.00~	

注: x86_64 環境で監視オプションをご利用される場合、監視対象のアプリケーションも x86_64 版のアプリケーションをご利用ください。

仮想マシンリソースの動作環境

仮想マシンリソースの動作確認を行った仮想化基盤のバージョン情報を下記に提示します。

仮想化基盤	バージョン	備考
Hyper-V	Windows Server 2012 Hyper-V	
l lypei-v	Windows Server 2012 R2 Hyper-V	

注: 仮想マシンリソースは Windows Server 2016 上では動作しません。

SNMP 連携機能の動作環境

SNMP 連携機能の動作確認を行った OS を下記に提示します。

x86_64 版

os	CLUSTERPRO Version	備考
Windows Server 2012	12.00~	
Windows Server 2012 R2	12.00~	
Windows Server 2016	12.00~	
Windows Server, version 1709	12.00~	

JVM監視の動作環境

JVM 監視を使用する場合には、Java 実行環境が必要です。

Java(TM) Runtime Environment Version7.0 Update 6 (1.7.0_6) 以降

Java(TM) Runtime Environment Version8.0 Update 11 (1.8.0_11) 以降

Java(TM) Runtime Environment Version9.0 (9.0.1) 以降

JVM 監視 ロードバランサ連携機能(BIG-IP Local Traffic Manager と連携する場合)を使用するには、Microsoft .NET Framework の実行環境が必要です。

Microsoft .NET Framework 3.5 Service Pack 1

Microsoft .NET Framework 3.5 SP1 日本語 Language Pack

JVM 監視 ロードバランサ連携機能の動作確認を行ったロードバランサを下記に提示します。 x86_64 版

ロードバランサ	CLUSTERPRO Version	備考
Express5800/LB400h以降	12.00~	
InterSec/LB400i 以降	12.00~	
BIG-IP v11	12.00~	
MIRACLE LoadBalancer	12.00~	
CoyotePoint Equalizer	12.00~	

システム監視及びシステムリソース情報を収集する機能の動作環境

System Resource Agent を使用するには、Microsoft .NET Framework の実行環境が必要です。

Microsoft .NET Framework 3.5 Service Pack 1

Microsoft .NET Framework 3.5 SP1 日本語 Language Pack

注 1: Microsoft .NET Framework のバージョンは、必ず 3.5 を使用してください。

注 2: 環境により、Microsoft .NET Framework 3.5 Service Pack 1 をインストールすると、 自動で Microsoft .NET Framework 3.5 SP1 日本語 Language Pack がインストールされる 場合があります。

インストール手順

サーバがインターネットにつながらない状態の場合、OS のインストール媒体を用意してください。インターネットにつながる状態の場合は必要ありません。

[サーバー マネージャー]を起動し、[ダッシュボード]画面で[クイックスタート]を選択してください。

表示されたメニューから[②役割と機能の追加]を選択し、[役割と機能の追加ウィザード]を表示します。

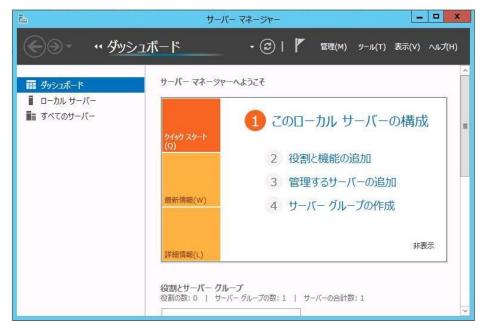


図1 サーバーマネージャー

[開始する前に]画面が表示された場合、[次へ]をクリックします。

[インストールの種類] 画面で[役割ベースまたは機能ベースのインストール] を選択し、 [次へ] をクリックします。 [サーバーの選択] 画面で[サーバー プールからサーバーを選択] を選択し、一覧から対象サーバを選択して[次へ] をクリックします。

図2対象サーバの選択

[サーバーの役割]画面で[次へ]をクリックしてください。

[機能] 画面で[.Net Framework 3.5 Features] にチェックを入れ、[次へ] をクリックします。

図3 機能の選択

サーバがインターネットにつながる状態の場合、[確認]画面で[インストール]をクリックし、.Net Framework 3.5 をインストールしてください。

サーバがインターネットにつながらない状態の場合、[確認]画面で[代替ソースパスの指定]を選択してください。

図 4 インストール オプションの確認

表示された画面の説明を参考に[パス]欄へ OS インストール媒体のパスを指定し、[OK]をクリックしてください。その後[インストール]をクリックし、.Net Framework 3.5 をインストールしてください。

図 5 代替ソース パスの指定

AWS Elastic IPリソース、AWS 仮想IPリソース、AWS Elastic IP監視リソース、AWS 仮想IP監視リソース、AWS AZ監視リソースの動作環境

AWS Elastic IP リソース、AWS 仮想 IP リソース、AWS Elastic IP 監視リソース、AWS 仮想 IP 監視リソース、AWS AZ 監視リソースを使用する場合には、以下のソフトウェアが必要です。

ソフトウェア	Version	備考
AWS CLI	1.6.0~	
Python	2.7.5~	3.*系は不可

AWS Elastic IP リソース、AWS 仮想 IP リソース、AWS Elastic IP 監視リソース、AWS 仮想 IP 監視リソース、AWS AZ 監視リソースの動作確認を行った AWS 上の OS のバージョン情報を下記に提示します。

ディストリビューション	CLUSTERPRO Version	備考
Windows Server 2012	12.00~	
Windows Server 2012 R2	12.00~	
Windows Server 2016	12.00~	

AWS DNS リソース、AWS DNS 監視リソースの動作環境

AWS DNS リソース、AWS DNS 監視リソースを使用する場合には、以下のソフトウェアが必要です。

ソフトウェア	Version	備考
AWS CLI	1.11.0~	
Python	2.7.5~	3.*系は不可

AWS DNS リソース、AWS DNS 監視リソースの動作確認を行った AWS 上の OS のバージョン情報を下記に提示します。

ディストリビューション	CLUSTERPRO Version	備考
Windows Server 2012	12.00~	
Windows Server 2012 R2	12.00~	
Windows Server 2016	12.00~	

Azure プローブポートリソース、Azure プローブポート監視リソース、Azure ロードバランス監視リソースの動作環境

Azure プローブポートリソース、Azure プローブポート監視リソース、Azure ロードバランス監視リソースの動作確認を行った Microsoft Azure 上の OS のバージョン情報を下記に提示します。

ディストリビューション	CLUSTERPRO Version	備考
Windows Server 2012	12.00~	
Windows Server 2012 R2	12.00~	
Windows Server 2016	12.00~	
Windows Server, version 1709	12.00~	

Azure プローブポートリソース、Azure プローブポート監視リソース、Azure ロードバランス監視リソースの動作確認を行った Microsoft Azure 上のデプロイモデルを下記に提示します。

ロードバランサーの設定方法は、『CLUSTERPRO X 4.0 Microsoft Azure 向け HA クラスタ 構築ガイド (Windows 版)』を参照してください。

デプロイモデル	CLUSTERPRO Version	備考
リソースマネージャー	12.00~	ロードバランサーの追加が 必要

Azure DNS リソース、Azure DNS 監視リソースの動作環境

Azure DNS リソース、Azure DNS 監視リソースの動作確認を行った Microsoft Azure 上の OS のバージョン情報を下記に提示します。

ディストリビューション	CLUSTERPRO Version	備考
Windows Server 2012	12.00~	
Windows Server 2012 R2	12.00~	
Windows Server 2016	12.00~	
Windows Server, version 1709	12.00~	

Azure DNS リソース、Azure DNS 監視リソースの動作確認を行った Microsoft Azure 上のデプロイモデルを下記に提示します。

Azure DNS の設定方法は、『CLUSTERPRO X 4.0 Microsoft Azure 向け HA クラスタ 構築ガイド (Windows 版)』を参照してください。

デプロイモデル	CLUSTERPRO Version	備考
リソースマネージャー	12.00~	Azure DNS の追加が必要

SAP連携コネクタの動作環境

SAP 連携コネクタの動作確認を行った OS および SAP NetWeaver(以降、SAP NW) の バージョン情報を下記に提示します。

SAP NW Version	CLUSTERPRO Version	os	クラスタ構成	備考
7.4	12.01~	Windows Server 2012 Windows Server 2012 R2 Windows Server 2016	SAN接続、共有ディスク型 ミラーディスク型	
7.5	12.00~	Windows Server 2012 Windows Server 2012 R2 Windows Server 2016	SAN接続、共有ディスク型 ミラーディスク型	

SAP NW のハードウェア要件およびソフトウェア要件は、SAP NW のドキュメントを参照してください。

Cluster WebUI の動作環境

Cluster WebUI を動作させるために必要な環境について記載します。

動作確認済 OS、ブラウザ

最新情報は CLUSTERPRO のホームページで公開されている最新ドキュメントを参照してください。現在の対応状況は下記の通りです。

os	ブラウザ	言語
Windows 7 Service Pack 1	Internet Explorer 11	日本語/英語/中国語
Windows 8	Internet Explorer 10	日本語/英語/中国語
Windows 8.1	Internet Explorer 11	日本語/英語/中国語
Windows 10	Internet Explorer 11	日本語/英語/中国語
Windows Server 2012	Internet Explorer 10	日本語/英語/中国語
Windows Server 2012 R2	Internet Explorer 11	日本語/英語/中国語
Windows Server 2016	Internet Explorer 11	日本語/英語/中国語

注: IP アドレスで接続する場合、事前に該当の IP アドレスを [ローカル イントラネット] の [サイト] に登録する必要があります。

注: Internet Explorer 11 にて Cluster WebUI に接続すると、Internet Explorer が停止することがあります。本事象回避のために、Internet Explorer のアップデート (KB4052978 以降) を適用してください。

必要メモリ容量/ディスク容量

必要メモリ容量200MB 以上必要ディスク容量50MB 以上

Builder の動作環境

Builder を動作させるために必要な環境について記載します。

動作確認済 OS、ブラウザ

最新情報は CLUSTERPRO のホームページで公開されている最新ドキュメントを参照してください。現在の対応状況は下記の通りです。

os	ブラウザ	言語
Windows 7 Service Pack 1	Internet Explorer 11	日本語/英語/中国語
Windows 8	Internet Explorer 10	日本語/英語/中国語
Windows 8.1	Internet Explorer 11	日本語/英語/中国語
Windows 10	Internet Explorer 11	日本語/英語/中国語
Windows Server 2012	Internet Explorer 10	日本語/英語/中国語
Windows Server 2012 R2	Internet Explorer 11	日本語/英語/中国語
Windows Server 2016	Internet Explorer 11	日本語/英語/中国語

注: IP アドレスで接続する場合、事前に該当の IP アドレスを [ローカル イントラネット] の [サイト] に登録する必要があります。

Java 実行環境

Builder を使用する場合には、Java 実行環境が必要です。

Java(TM) Runtime Environment

Version8.0 Update 162 (1.8.0_162) 以降

Java(TM) Runtime Environment Version9.0 (9.0.4) 以降

注:Java(TM) Runtime Environment Version9.0 では、Java アプレット版は動作しません。

必要メモリ容量/ディスク容量

必要メモリ容量 50MB 以上

必要ディスク容量 10MB 以上 (Java 実行環境に必要な容量を除く)

対応する CLUSTERPRO の内部バージョン

オフライン版 Builder のバージョンと CLUSTERPRO の内部バージョンは下記の対応表の組み合わせで使用してください。それ以外の組み合わせで使用すると正常に動作しない可能性があります。

オフライン版Builderのバージョン	CLUSTERPROの内部バージョン
4.0.0-1	12.00
4.0.0-1	12.01

WebManager の動作環境

WebManager を動作させるために必要な環境について記載します。

動作確認済 OS、ブラウザ

最新情報は CLUSTERPRO のホームページで公開されている最新ドキュメントを参照してください。現在の対応状況は下記の通りです。

os	ブラウザ	言語
Windows 7 Service Pack 1	Internet Explorer 11	日本語/英語/中国語
Windows 8	Internet Explorer 10	日本語/英語/中国語
Windows 8.1	Internet Explorer 11	日本語/英語/中国語
Windows 10	Internet Explorer 11	日本語/英語/中国語
Windows Server 2012	Internet Explorer 10	日本語/英語/中国語
Windows Server 2012 R2	Internet Explorer 11	日本語/英語/中国語
Windows Server 2016	Internet Explorer 11	日本語/英語/中国語

注: IP アドレスで接続する場合、事前に該当の IP アドレスを [ローカル イントラネット] の [サイト] に登録する必要があります。

Java 実行環境

WebManager を使用する場合には、Java 実行環境が必要です。

Java(TM) Runtime Environment Version8.0 Update 162 (1.8.0_162) 以降

Java(TM) Runtime Environment Version9.0 (9.0.4) 以降

注: Java(TM) Runtime Environment Version 9.0 では、Java アプレット版は動作しません。

必要メモリ容量/ディスク容量

必要メモリ容量 50MB 以上

必要ディスク容量 10MB 以上 (Java 実行環境に必要な容量を除く)

統合 WebManager の動作環境

Java アプレット版の 統合 WebManager を動作させるために必要な環境について記載します。Java アプリケーション版の 統合 WebManager については、『統合 WebManager 管理者ガイド』を参照してください。

動作確認済 OS、ブラウザ

最新情報は CLUSTERPRO のホームページで公開されている最新ドキュメントを参照してください。現在の対応状況は下記の通りです。

os	ブラウザ	言語
Windows 7 Service Pack 1	Internet Explorer 11	日本語/英語/中国語
Windows 8	Internet Explorer 10	日本語/英語/中国語
Windows 8.1	Internet Explorer 11	日本語/英語/中国語
Windows 10	Internet Explorer 11	日本語/英語/中国語
Windows Server 2012	Internet Explorer 10	日本語/英語/中国語
Windows Server 2012 R2	Internet Explorer 11	日本語/英語/中国語
Windows Server 2016	Internet Explorer 11	日本語/英語/中国語

注: IP アドレスで接続する場合、事前に該当の IP アドレスを [ローカル イントラネット] の [サイト] に登録する必要があります。

Java 実行環境

統合 WebManager を使用する場合には、Java 実行環境が必要です。

Java(TM) Runtime Environment Version8.0 Update 162 (1.8.0_162) 以降

Java(TM) Runtime Environment Version9.0 (9.0.4) 以降

注: Java(TM) Runtime Environment Version 9.0 では、Java アプレット版は動作しません。

必要メモリ容量/ディスク容量

必要メモリ容量 50MB 以上

必要ディスク容量 10MB 以上 (Java 実行環境に必要な容量を除く)

第4章 最新バージョン情報

本章では、CLUSTERPRO の最新情報について説明します。新しいリリースで強化された点、改善された点などをご紹介します。

•	
•	CLUSTERPRO とマニュアルの対応一覧
•	機能強化
•	修正情報

CLUSTERPRO とマニュアルの対応一覧

本書では下記のバージョンの CLUSTERPRO を前提に説明してあります。CLUSTERPRO のバージョンとマニュアルの版数に注意してください。

CLUSTERPROの 内部パージョン	マニュアル	版数	備考
12.01	インストール&設定ガイド	第 2 版	
	スタートアップガイド	第 2 版	
	リファレンスガイド	第 2 版	
	統合WebManager 管理者ガイド	第 15 版	

機能強化

各バージョンにおいて以下の機能強化を実施しています。

項番	内部バージョン	機能強化項目	
1	12.00	デザインを刷新した管理 GUI (Cluster WebUI) を実装しました。	
2	12.00	WebManager が HTTPS プロトコルに対応しました。	
3	12.00	期限付きライセンスが利用可能になりました。	
4	12.00	ミラーディスクリソース、ハイブリッドディスクリソースの最大数を拡大しました。	
5	12.00	Windows Server, version 1709 に対応しました。	
6	12.00	SQL Server 監視リソースが SQL Server 2017 に対応しました。	
7	12.00	Oracle 監視リソースが Oracle 12c R2 に対応しました。	
8	12.00	PostgreSQL 監視リソースが PowerGres on Windows 9.6 に対応しました。	
9	12.00	WebOTX 監視リソースが WebOTX V10.1 に対応しました。	
10	12.00	JVM 監視リソースが Apache Tomcat 9.0 に対応しました。	
11	12.00	JVM 監視リソースが WebOTX V10.1 に対応しました。	
12	12.00	JVM 監視リソースで以下の監視が可能になりました。 ・CodeHeap non-nmethods ・CodeHeap profiled nmethods ・CodeHeap non-profiled nmethods ・Compressed Class Space	
13	12.00	AWS DNS リソース、AWS DNS 監視リソースを追加しました。	
14	12.00	Azure DNS リソース、Azure DNS 監視リソースを追加しました。	
15	12.00	クラスタ操作外の OS シャットダウンが実行された場合に、クラスタサービスの停止完了まで OS シャットダウンを延期させる機能を追加しました。	
16	12.00	モニタリソースにおけるエラー判定およびタイムアウト判定の精度を改善しました。	
17	12.00	グループリソースの活性/非活性の前後で、任意のスクリプトを実行する機能を追加しました。	
18	12.00	両系活性検出時に生存させるサーバグループを選択可能にしました。	
19	12.00	フェイルオーバ属性に [完全排他] が設定されているグループにて、排他の対象とする組み合わせを設定できるようになりました。	

第 4 章 最新バージョン情報

項番	内部バージョン	機能強化項目	
20	12.00	フェイルオーバ回数のカウント方式をサーバ単位/クラスタ単位から選択可能になりました。	
21	12.00	内部プロセス間通信で消費されるTCPポート量を削減しました。	
22	12.00	ログ収集で収集する項目を強化しました。	
23	12.00	ミラーディスクリソース、ハイブリッドディスクリソースの差分ビットマップサイズを設 定できるようになりました。	
24	12.00	ミラーディスクリソース、ハイブリッドディスクリソースの非同期モードでの履歴記録 領域サイズを設定できるようになりました。	
25	12.01	WebManagerにおいて、設定不備によりHTTPSを使用できない場合に、イベントログおよびアラートログへメッセージを出力するようにしました。	

修正情報

各バージョンにおいて以下の修正を実施しています。

項番	修正バージョン / 発生バージョン	修正項目	致命度	発生条件 発生頻度	原因
1	12.01 / 12.00	同一製品の期限付きライセンス が 2 つ有効化されることがあ る。	小		ライセンス情報を操作する際の 排他処理に不備があったため。
2	12.01 / 12.00	clpgrp コマンドによるグループ の起動が失敗する。		排他ルールが設定された構成で、起動対象のグループ名を指定せずにclpgrpコマンドを実行した場合に発生する。	グループ名が省略された場合の 処理に不備があったため。
3		Cluster WebUI、WebManager、clpstat コマンドで、ミラーディスクに関する以下のパラメータが正しく表示されない。 ・差分ビットマップサイズ・非同期モードでの履歴記録領域サイズ		Cluster WebUI、 WebManager、clpstatコマ ンドでクラスタプロパティを 参照した場合に発生する。	表示データの取得処理に不備があったため。
4	12.01 / 12.00	モニタリソースの監視タイムア ウトが検出されないことがあ る。	中		タイムアウト判定処理に不備が あったため。
5	12.01 / 12.00	下記パラメータの変更が適切に反映されないことがある。 ・グループリソース活性異常検出時のフェイルオーバしきい値 ・モニタリソース異常検出時の 最大フェイルオーバ回数	中	場合に発生する。	パラメータ変更時に要求される 反映方法が適切でなかったた め。

項番	修正パージョン / 発生パージョン	修正項目	致命度	発生条件 発生頻度	原因
6	/ 12.00	CPU ライセンスと VM ノードライセンスが混在する構成で、 CPU ライセンスの不足を示す 警告メッセージが出力される。	小	ライセンスが混在する場合	ライセンスのカウント処理に不 備があったため。
7	/ 12.00	ODBC 監視で監視異常を検出 した場合、監視正常と判断して しまう。	中	生した場合に発生する。	ODBC 監視の監視ステータスを 返却する処理に不備があったた め。
8	/ 12.00	Azure DNS 監視リソースにおいて、Azure 上の DNS サーバーが正常に稼働していても異常となる場合がある。	•	場合、必ず発生する。 ・[名前解決確認をする] がオンの場合	該当バージョンの Azure CLI に より取得する DNS サーバーー 覧にタブ文字が含まれることに より、Azure CLI の出力結果の 解析処理に失敗するため。
9	/ 12.00	Azure DNS 監視リソースにおいて、Azure 上の DNS サーバーの一部が正常に稼働している場合でも異常となる場合がある。	小	場合、必ず発生する。 ・[名前解決確認をする] がオンの場合	DNS サーバーに対する健全性確認処理に不備があったため。
10	/ 12.00	Azure DNS 監視リソースにおいて、Azure 上の DNS サーバー一覧の取得に失敗した場合でも異常とならない。	小		正常、異常の判定処理に不備 があったため。
11	/ 12.00	以下の監視リソースにおいて、 制御用プロセスが消滅しても異常とならず警告となる。 ・仮想コンピュータ名監視リソース ・仮想 IP 監視リソース ・CIFS 監視リソース ・ダイナミック DNS 監視リソース	中		警告、異常の判定処理に不備 があったため。

項番	修正バージョン / 発生バージョン	修正項目	致命度	発生条件 発生頻度	原因
12	12.01 / 12.00	JVM 監視リソース利用時、監 視対象 Java VM でメモリリー クが発生することがある。	中	以下の条件の場合に発生することがある。 ・[監視(固有)]タブ-[調整]プロパティ-[スレッド]タブ-[動作中のスレッド数を監視する]がオンの場合	使用している Java API の延長 で Scavenge GC で解放されな いクラスが蓄積されることがある ため。
13	12.01 / 12.00	JVM 監視リソースの Java プロセスにおいて、メモリリークが発生することがある。	中		監視対象 Java VM への接続切断処理に不備があったため。
14	12.01 / 12.00	JVM 監視リソースにおいて、 以下のパラメータをオフにして も JVM 統計ログ (jramemory.stat)が出力され る。 ・[監視(固有)]タブ-[調整]プロパ ティ-[メモリ]タブ-[ヒープ使用量 を監視する] ・[監視(固有)]タブ-[調整]プロパ ティ-[メモリ]タブ-[非ヒープ使用 量を監視する]	小		JVM 統計ログの出力判断処理 に不備があったため。
15	12.01 / 12.00	JVM 監視リソースにおいて、 ロードバランサ連携機能および BIG-IP 連携機能が動作しない。	中	必ず発生する。	バイナリの署名内容に差分があり、セキュリティエラーにより該 当機能のコマンドが起動に失敗 するため。
16	12.01 / 12.00	CLUSTERPRO Ver8.0 以前 との互換機能を利用しているア プリケーションにおいて、一部 のクラスタイベントを正しく取得 できない。		互換APIを使用してクラスタ イベントを監視している場合 に発生する。	ー部のクラスタイベントの通知 処理に不備があったため。

第5章 注意制限事項

本章では、注意事項や既知の問題とその回避策について説明します。 本章で説明する項目は以下の通りです。

•	システム構成検討時	84
		_
•	CLUSTERPRO インストール前 ····································	. 89
•	CLUSTERPRO の構成情報作成時	103
•	CLUSTERPRO 運用後	109
	CLUSTERPRO の構成変更時	
	CLUSTERPRO アップグレード時	
•	旧バージョンとの互換性	121

システム構成検討時

HW の手配、システム構成、共有ディスクの構成時に留意すべき事項について説明します。

ミラーディスク/ハイブリッドディスクの要件について

- ◆ ダイナミックディスクは使用できません。ベーシックディスクを使用してください。
- ◆ ミラーディスク/ハイブリッドディスク用のパーティション (データパーティションとクラスタ パーティション) を NTFS フォルダにマウントして使用することはできません。
- ◆ ミラーディスクリソース/ハイブリッドディスクリソースを使用するには、ミラー用のパーティション (データパーティションとクラスタパーティション) が必要です。
- ◆ ミラー用のパーティションのディスク上の配置には特に制限はありませんが、データパー ティションのサイズはバイト単位で完全に一致している必要があります。またクラスタパー ティションには 1024MB 以上の容量が必要です。
- ◆ データパーティションを拡張パーティション上の論理パーティションとして作成する場合は、 両サーバとも論理パーティションにしてください。基本パーティションと論理パーティション では同じサイズを指定しても実サイズが若干異なることがあります。
- ◆ 負荷分散のため、クラスタパーティションとデータパーティションは別のディスク上に作成 することを推奨します(同じディスク上に作成しても動作に支障はありませんが、非同期 ミラーの場合やミラーリングを中断している状態での書き込み性能が若干低下します)。
- ◆ ミラーリソースでミラーリングするデータパーティションを確保するディスクは、両サーバで ディスクのタイプを同じにしてください。

例)

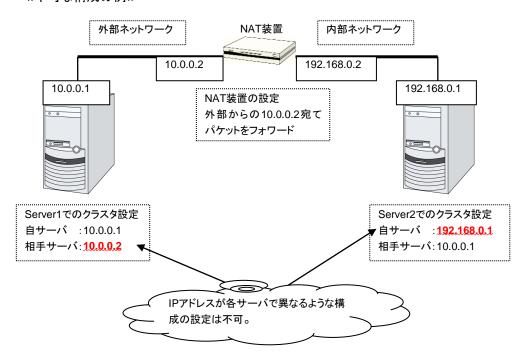
組み合わせ	サーバ1	サーバ2
ОК	SCSI	SCSI
ОК	IDE	IDE
NG	IDE	SCSI

- ◆ [ディスクの管理] などで確保したパーティションサイズは、ディスクのシリンダあたりのブロック (ユニット) 数でアラインされます。このため、ミラー用のディスクとして使用するディスクのジオメトリがサーバ間で異なると、データパーティションのサイズを完全に一致させることができない場合があります。このような問題を避けるため、データパーティションを確保するディスクは、RAID構成なども含め両サーバでHW構成を一致させることを推奨します。
- ◆ 両サーバでディスクのタイプやジオメトリを揃えられない場合は、ミラーディスクリソース/ハイブリッドディスクリソースを設定する前に [clpvolsz] コマンドにより両サーバのデータパーティションの正確なサイズを確認し、もしサイズが一致しない場合は再度 [clpvolsz] コマンドを使用して大きいほうのパーティションを縮小してください。
- ◆ RAID 構成のディスクをミラーリングする場合、ディスクアレイコントローラのキャッシュを WRITE THRU にすると書き込み性能の低下が大きくなるため、WRITE BACK での使 用をお勧めします。ただし、WRITE BACK で使用する場合は、バッテリーを搭載したディスクアレイコントローラを用いるか、UPS を併用する必要があります。
- ◆ OS のページファイルがあるパーティションは、ミラーリングできません。

IPv6環境について

下記の機能は IPv6 環境では使用できません。

◆ BMCハートビートリソース


下記の機能はリンクローカルアドレスを使用できません。

- ◆ カーネルモードLANハートビートリソース
- ◆ ミラーディスクコネクト
- ◆ PINGネットワークパーティション解決リソース
- ◆ FIPリソース
- ◆ VIPリソース

ネットワーク構成について

NAT 環境等のように、自サーバの IP アドレスおよび相手サーバの IP アドレスが、各サーバで異なるような構成においては、クラスタ構成を構築/運用できません。

≪不可な構成の例≫

共有ディスクの要件について

- ◆ ダイナミックディスクは使用できません。ベーシックディスクを使用してください。
- ◆ 共有ディスク用のパーティション (ディスクハートビート用パーティション、ディスクリソース 用切替パーティション) を NTFS フォルダにマウントして使用することはできません。
- ◆ ソフトウェア RAID (ストライプセット、ミラーセット、パリティ付ストライプセット) やボリュームセットは使用できません。

ミラーディスク/ハイブリッドディスクの write 性能について

ミラーディスクリソース/ハイブリッドディスクリソースのディスクミラーリングには同期ミラーと非同期ミラーの 2 種類の方式があります。

同期ミラーの場合、ミラーリング対象のデータパーティションへの書き込み要求毎に、両サーバのディスクへの書き込みを実施し、その完了を待ち合わせます。各サーバへの書き込みは並行して実施されますが、他サーバのディスクへの書き込みはネットワークを介して実施されるため、ミラーリングしない通常のローカルディスクに比べ書き込み性能が低下します。特にネットワークの通信速度が低く遅延が大きい遠隔クラスタ構成などの場合は大幅に性能が低下することになります。

非同期ミラーの場合、自サーバへの書き出しは即時実行しますが、他サーバへの書き出しは ー旦ローカルキューに保存し、バックグラウンドで書き出します。他サーバへの書き出しの完 了を待ち合わせないため、ネットワーク性能が低い場合も書き込み性能が大きく低下すること はありません。ただし、非同期ミラーの場合も書き込み要求毎に更新データをキューに保存す るため、ミラーリングしない通常のローカルディスクや共有ディスクに比べると、書き込み性能 が低下します。このため、ディスクへの書き込み処理に高いスループットが要求されるシステム (更新系が多いデータベースシステムなど) には共有ディスクの使用を推奨します。

また、非同期ミラーの場合、書き込み順序は保証されますが、現用系サーバがダウンした場合に最新の更新分が失われる可能性があります。このため、障害発生直前の情報を確実に引き継ぐ必要がある場合は、同期ミラーか共有ディスクを用いる必要があります。

非同期ミラーの履歴ファイルについて

非同期モードのミラーディスク/ハイブリッドディスクでは、メモリ上のキューに記録しきれない書き込みデータは、履歴ファイル格納フォルダとして指定されたフォルダに履歴ファイルとして一時的に記録されます。この履歴ファイルは、履歴ファイルのサイズ制限を設定していない場合、指定されたフォルダに制限なく書き出されます。このような設定の場合、回線速度が業務アプリケーションのディスク更新量に比べて低すぎると、リモートサーバへの書き込み処理がディスク更新に追いつかず、履歴ファイルでディスクが溢れてしまいます。このため、遠隔クラスタ構成でも業務 AP のディスク更新量に合わせて十分な速度の通信回線を確保する必要があります。

また、長時間の通信遅延や、ディスク更新の連続発生などにより、履歴ファイル格納フォルダが溢れた場合に備え、履歴ファイルの書き出し先に指定するドライブには十分な空き容量を確保し、履歴ファイルサイズ制限を設定するか、システムドライブとは別のドライブを指定する必要があります。

複数の非同期ミラー間のデータ整合性について

非同期モードのミラーディスク/ハイブリッドディスクでは、現用系のデータパーティションへの書き込みを、同じ順序で待機系のデータパーティションにも実施します。

ミラーディスクの初期構築中やミラーリング中断後の復帰(コピー)中以外は、この書き込み順序が保証されるため、待機系のデータパーティション上にあるファイル間のデータ整合性は保たれます。

しかし、複数のミラーディスク/ハイブリッドディスクリソース間では書き込み順序が保証されませんので、例えばデータベースのデータベースファイルとジャーナル(ログ)ファイルのように、一方のファイルが他方より古くなるとデータの整合性が保てないファイルを複数の非同期ミラーディスクに分散配置すると、サーバダウン等でフェイルオーバした際に業務アプリケーションが正常に動作しなくなる可能性があります。

このため、このようなファイルは必ず同一の非同期ミラーディスク/ハイブリッドディスク上に配置してください。

マルチブートについて

他のブートディスクで起動すると、ミラーや共有ディスクのアクセス制限が外れてしまい、ミラーディスクの整合性保証や共有ディスクのデータ保護ができなくなるため、これらのリソースを使用している場合はマルチブートを使用しないでください。

JVM監視リソースについて

- ◆ 同時に監視可能な Java VM は最大 25 個です。同時に監視可能な Java VM とは Builder([監視(固有)]タブ-[識別名])で一意に識別する Java VM 数のことです。
- ◆ Java VM と JVM 監視リソース間のコネクションは SSL には対応していません。
- ◆ スレッドのデッドロックは検出できない場合があります。これは、Java VM の既知で発生している不具合です。詳細は、Oracle の Bug Database の「Bug ID: 6380127」を参照してください。
- ◆ JVM 監視リソースが監視できる Java VM は、JVM 監視リソースが動作中のサーバと同じサーバ内のみです。
- ◆ Builder(クラスタプロパティ-[JVM 監視]タブ-[Java インストールパス])で設定した Java インストールパスは、クラスタ内のサーバにおいて、共通の設定となります。JVM 監視 が使用する Java VM のバージョンおよびアップデートは、クラスタ内のサーバにおいて、同じものにしてください。
- ◆ Builder(クラスタプロパティ-[JVM 監視]タブ-[接続設定]ダイアログ-[管理ポート番号]) で設定した管理ポート番号は、クラスタ内のサーバにおいて、共通の設定となります。
- ◆ x86_64版 OS 上において IA32版の監視対象のアプリケーションを動作させている場合、監視を行うことはできません。
- ◆ Builder(クラスタプロパティ-[JVM 監視]タブ-[最大 Java ヒープサイズ])で設定した最大 Java ヒープサイズを 3000 など大きな値に設定すると、JVM 監視リソースが起動に失 敗します。システム環境に依存するため、システムのメモリ搭載量を元に決定してください。
- ◆ ロードバランサ連携の監視対象 Java VM の負荷算出機能を利用する場合は、 SingleServerSafe での利用を推奨します。また、Red Hat Enterprise Linux でのみ動 作可能です。
- ◆ 監視対象 Java VM の起動オプションに「-XX:+UseG1GC」が付加されている場合、 Java 7 以前では JVM 監視リソースの[プロパティ]-[監視(固有)] タブ-[調整]プロパティ -[メモリ]タブ内の設定項目は監視できません。 Java 8 以降では JVM 監視リソースの[プロパティ]-[監視(固有)]タブ-[JVM 種別]に [Oracle Java(usage monitoring)]を選択することで監視可能です。

ネットワーク警告灯の要件について

- ◆ 「警子ちゃんミニ」、「警子ちゃん 4G」を使用する場合、警告灯にパスワードを設定しないで下さい。
- ◆ 音声ファイルの再生による警告を行う場合、あらかじめ音声ファイル再生に対応した ネットワーク警告灯に音声ファイルを登録しておく必要があります。 音声ファイルの登録に関しては、各ネットワーク警告灯の取扱説明書を参照して下さい。
- ◆ ネットワーク警告灯にクラスタ内のサーバからの rsh コマンド実行を許可するように 設定してください。

CLUSTERPRO インストール前

OS のインストールが完了した後、OS やディスクの設定を行うときに留意して頂きたいことです。

ファイルシステムについて

OS をインストールするパーティション、共有ディスクのディスクリソースとして使用するパーティション、ミラーディスク/ハイブリッドディスクリソースのデータパーティションのファイルシステムは NTFS を使用してください。

通信ポート番号

CLUSTERPRO では、デフォルトで以下のポート番号を使用します。このポート番号については Builder での変更が可能です。これらのポート番号には、CLUSTERPRO 以外のプログラムからアクセスしないようにしてください。

サーバにファイアウォールの設定を行う場合には、下記のポート番号にアクセスできるようにしてください。

AWS 環境の場合は、ファイアウォールの設定の他にセキュリティグループ設定においても、下記のポート番号にアクセスできるようにしてください。

		Γ++-	ーバ	. ++	ーバ	問
--	--	------	----	------	----	---

From			То		備考
サーバ	自動割り当て**2	\rightarrow	サーバ	29001/TCP	内部通信
サーバ	自動割り当て	\rightarrow	サーバ	29002/TCP	データ転送
サーバ	自動割り当て	\rightarrow	サーバ	29003/UDP	アラート同期
サーバ	自動割り当て	\rightarrow	サーバ	29004/TCP	ディスクエージェント間通信
サーバ	自動割り当て	\rightarrow	サーバ	29005/TCP	ミラードライバ間通信
サーバ	29106/UDP	\rightarrow	サーバ	29106/UDP	ハートビート
[サーバ・クライアント間] From To 備考					
クライアント	自動割り当て	\rightarrow	サーバ	29007/TCP 29007/UDP	クライアントサービス通信
[サーバ・Cluster WebUI / WebManager 間]					
From			То		備考

^{**2} 自動割り当てでは、その時点で使用されていないポート番号が割り当てられます。 セクション II リリースノート (CLUSTERPRO 最新情報)

[統合 WebManager でブラウザが接続しているサーバ・管理対象のサーバ間]

From			To		備考
ブラウザが接続 しているサーバ	自動割り当て	\rightarrow	サーバ	29003/TCP	http 通信
統合 WebMana ger の管理対象 となるサーバ	29003	\rightarrow	クライ アント	29010/UDP	UDP 通信

[その他]

From			То		備考
サーバ	自動割り当て	\rightarrow	ネットワーク警告灯	各 製 品 の マニュアル を参照	ネットワーク警告灯制御
サーバ	自動割り当て	\rightarrow	サーバの BMC のマ ネージメント LAN	623/UDP	BMC 制御 (強制停止/筐体ランプ 連携)
サ ー バ の BMC の マ ネージメント LAN	自動割り当て	\rightarrow	サーバ	162/UDP	BMC 連携用に設定された外部 連携モニタの監視先
サ ー バ の BMC の マ ネージメント LAN	自動割り当て	\rightarrow	サーバの BMC のマ ネージメント LAN	5570/UDP	BMC HB 通信
サーバ	自動割り当て	\rightarrow	監視先	icmp	IP 監視リソース
サーバ	自動割り当て	\rightarrow	NFS サーバ	icmp	NAS リソースの NFS サーバ死活 確認
サーバ	自動割り当て	\rightarrow	監視先	icmp	Ping 方式ネットワークパーティ ション解決リソースの監視先
サーバ	自動割り当て	\rightarrow	サーバ	Builder で 設定した管 理ポート番 号	JVM 監視リソース
サーバ	自動割り当て	\rightarrow	監視先	Builder で 設定した接 続ポート番 号	JVM 監視リソース
サーバ	自動割り当て	\rightarrow	サーバ	Builder で 設定した ロードバラ ンサ連携 管理ポート 番号	JVM 監視リソース
サーバ	自動割り当て	→	BIG-IP LTM	Builder で 設定した通 信ポート番 号	JVM 監視リソース
サーバ	自動割り当て	\rightarrow	サーバ	Builder で 設定したプ ロ ー ブ ポート	Azure プローブポートリソース
			<u> </u>		

					AWS Elastic IP リソース
					AWS 仮想 IP リソース
					AWS DNS リソース
サーバ	自動割り当て -	\rightarrow	AWS リージョンエン ドポイント	443/tcp	AWS Elastic IP 監視リソース
					AWS 仮想 IP 監視リソース
					AWS AZ 監視リソース
					AWS DNS 監視リソース
サーバ	自動割り当て -	\rightarrow	Azure エンドポイント	443/tcp	Azure DNS リソース
サーバ	自動割り当て ・	\rightarrow	Azure の権威 DNS サーバ	53/udp	Azure DNS 監視リソース

ミラーコネクト監視リソースを使用する場合、CLUSTERPRO はサーバ間で ping による疎通 確認を行うため、icmp パケットを通すように設定する必要があります。ミラーコネクト監視リソースを使用する場合は、ファイアウォールの設定を変更して、サーバ間で ping による疎通 確認ができるようにしてください。AWS 環境 の場合は、ファイアウォールの設定の他にセキュリティグループ設定も変更してください。

JVM 監視モニタでは以下の 4 つのポート番号を使用します。

- ◆ 管理ポート番号は JVM 監視リソースが内部で使用するためのポート番号です。Builder の [クラスタプロパティ]-[JVM 監視]タブ-[接続設定] ダイアログで設定します。詳細について は『リファレンスガイド』の「第 2 章 Builder の機能」を参照してください。
- ◆ 接続ポート番号は監視先(WebLogic Server, WebOTX)の Java VM と接続するための ポート番号です。Builder の該当する JVM 監視リソース名の[プロパティ]-[監視(固有)]タ ブで設定します。詳細については『リファレンスガイド』の「第 6 章 モニタリソースの詳細」 を参照してください。
- ◆ ロードバランサ連携管理ポート番号はロードバランサ連携を行う場合に使用するためのポート番号です。ロードバランサ連携を使用しない場合は、設定不要です。Builder の[クラスタプロパティ]-[JVM 監視]タブ-[ロードバランサ連携設定] ダイアログで設定します。詳細については『リファレンスガイド』の「第2章 Builderの機能」を参照してください。
- ◆ 通信ポート番号は BIG-IP LTM によるロードバランサ連携を行う場合に使用するためのポート番号です。ロードバランサ連携を使用しない場合は、設定不要です。Builder の[クラスタプロパティ]-[JVM 監視]タブ-[ロードバランサ連携設定] ダイアログで設定します。詳細については『リファレンスガイド』の「第2章 Builderの機能」を参照してください。

プローブポートは、Microsoft Azure のロードバランサが、各サーバの死活監視に使用するポートです。

AWS Elastic IP リソース、AWS 仮想 IP リソース、AWS DNS リソース、AWS Elastic IP 監視リソース、AWS 仮想 IP 監視リソース、AWS AZ 監視リソース、AWS DNS 監視リソースでは、AWS CLI を実行します。AWS CLI では上記のポート番号を使用します。

Azure DNS リソースでは、Azure CLI を実行します。Azure CLI では上記のポート番号を使用します。

通信ポート番号の自動割り当て範囲の変更

OS が管理している通信ポート番号の自動割り当ての範囲が CLUSTERPRO が使用する 通信ポート番号と重複する場合があります。

OS が管理している通信ポート番号の自動割り当ての範囲を以下の方法等により確認して、通信ポート番号が重複する場合には、CLUSTERPRO が使用する通信ポート番号と重複しないよう、CLUSTERPRO が使用するポート番号を変更するか、または OS が管理している通信ポート番号の自動割り当ての範囲を以下の方法等により変更してください。

- ◆ Windows が提供する netsh コマンドにて、自動割り当ての範囲を表示/設定します。
 - OS が管理している通信ポート番号の自動割り当て範囲の確認方法
 netsh interface <ipv4|ipv6> show dynamicportrange <tcp|udp>
 以下に実行例を示します。

>netsh interface ipv4 show dynamicportrange tcp

プロトコル tcp の動的ポートの範囲

ボート数: 49152 : 16384

上記は、ipv4、TCP プロトコルの通信ポート番号の自動割り当ての範囲が 49152 ~ 68835 (ポート番号 49152 から 16384 個のポートを割り当て) であることを示します。CLUSTERPRO が使用するポート番号がこの範囲内にある場合は、CLUSTERPRO が使用するポート番号を変更するか、後述の「OS が管理している通信ポート番号の自動割り当て範囲の設定方法」を実施してください。

OS が管理している通信ポート番号の自動割り当て範囲の設定方法

netsh interface <ipv4|ipv6> set dynamicportrange <tcp|udp> [startport=]<開始ポート番号> [numberofports=]<自動割り当て範囲>

以下に実行例を示します。

>netsh interface ipv4 set dynamicportrange tcp startport=10000 numberofports=1000

上記は、ipv4、TCP プロトコルの通信ポート番号の自動割り当ての範囲を 10000 ~ 10999 (ポート番号 10000 から 1000 個のポートを割り当て) に設定します。

ポート数不足を回避する設定について

CLUSTERPRO の構成において、多数のサーバ、多数のリソースを使用している場合、 CLUSTERPRO の内部通信に使用する一時ポートが不足して、クラスタサーバとして正常に 動作できなくなる可能性があります。

一時ポートとして使用できる範囲や、一時ポートが解放されるまでの時間を必要に応じて調整 してください。

時刻同期の設定

クラスタシステムでは、複数のサーバの時刻を定期的に同期する運用を推奨します。タイムサーバなどを使用してサーバの時刻を同期させてください。

共有ディスクについて

- ◆ CLUSTERPRO によるアクセス制限を行っていない状態で、共有ディスクに接続された サーバを複数起動すると、共有ディスク上のデータが破壊される危険があります。アクセ ス制限をかける前は、必ずいずれか 1 台のみ起動するようにしてください。
- ◆ ネットワークパーティション解決方式としてディスク方式を用いる場合、DISK ネットワーク パーティション解決リソースが使用する 17MB 以上の RAW パーティション (ディスク ハートビート用パーティション) を共有ディスク上に作成してください。
- ◆ ディスクリソースとしてサーバ間のデータ引き継ぎに使用するパーティション(切替パー ティション)は NTFS でフォーマットしてください。
- ◆ 共有ディスク上の各パーティションには、全てのサーバで同一のドライブ文字を設定してください。
- ◆ 共有ディスク上のパーティション作成やフォーマットは、いずれか 1 台のサーバからのみ 行います。各サーバで再作成・再フォーマットを行う必要はありません。ただし、ドライブ文 字は各サーバで設定する必要があります。
- ◆ サーバの再インストール等で共有ディスク上のデータを引き続き使用する場合は、パー ティションの確保やフォーマットは行わないでください。パーティションの確保やフォーマットを行うと共有ディスク上のデータは削除されます。

ミラーディスク用のパーティションについて

- ◆ ミラーディスクリソースの管理用パーティション (クラスタパーティション) として、1024MB 以上の RAW パーティションを各サーバのローカルディスクに作成してください。
- ◆ ミラーリング対象のパーティション (データパーティション) を各サーバのローカルディスク に作成し、NTFS でフォーマットしてください (既存のパーティションをミラーリングする場合、パーティションを作り直す必要はありません)。
- ◆ データパーティションのサイズは、両サーバで等しくなるように設定してください。正確な パーティションサイズの確認と調整には [clpvolsz] コマンドを使用してください。
- ◆ クラスタパーティションとデータパーティションには、両サーバで同じドライブ文字を設定してください。

ハイブリッドディスク用のパーティションについて

- ◆ ハイブリッドディスクリソースの管理用パーティション (クラスタパーティション) として、 1024MB 以上の RAW パーティションを各サーバグループの共有ディスク (サーバグ ループのメンバサーバが 1 台の場合はローカルディスク) に作成してください。
- ◆ ミラーリング対象のパーティション (データパーティション) を各サーバグループの共有 ディスク (サーバグループのメンバサーバが 1 台の場合はローカルディスク) に作成し、 NTFS でフォーマットしてください (既存のパーティションをミラーリングする場合、パー ティションを作り直す必要はありません)。
- ◆ データパーティションのサイズは、両サーバグループで等しくなるように設定してください。 正確なパーティションサイズの確認と調整には [clpvolsz] コマンドを使用してください。
- ◆ クラスタパーティションとデータパーティションには、各サーバで同じドライブ文字を設定してください。

データパーティション上のフォルダやファイルのアクセス許可について

ワークグループ環境で、データパーティション上のフォルダやファイルにアクセス許可の設定を行う場合、そのデータパーティションにアクセスする全てのノードで、該当のユーザに対してアクセス許可を設定する必要があります。例えば server1, server2 の test というユーザに対してアクセス許可を与える場合、server1 および server2 にて test ユーザに対してアクセス許可を設定してください。

OS 起動時間の調整

電源が投入されてから、OS が起動するまでの時間が、下記の 2 つの時間より長くなるように調整してください**3。

- ◆ 共有ディスクを使用する場合に、ディスクの電源が投入されてから使用可能になるまでの 時間
- ◆ ハートビートタイムアウト時間

^{**3} 具体的な手順は、『インストール&設定ガイド』の「第 1 章 システム構成を決定する」の "OS起動時間を調整する" を参照してください。

ネットワークの確認

- ◆ インタコネクトやミラーコネクトで使用するネットワークの確認をします。クラスタ内のすべてのサーバで確認します。
- ◆ [ipconfig] コマンドや [ping] コマンドを使用してネットワークの状態を確認してください。
 - Public LAN (他のマシンと通信を行う系)
 - インタコネクト専用 LAN (CLUSTERPRO のサーバ間接続に使用する系)
 - ミラーコネクト LAN (インタコネクトと共用)
 - ホスト名
- ◆ クラスタで使用するフローティング IP リソースの IP アドレスは、OS 側への設定は不要です。
- ◆ IPv6 のみの環境の場合、NIC がリンクダウンすると、その NIC に付与されている IP アドレスが見えなくなり、CLUSTERPRO の動作に影響を与えます。下記のコマンドを実行し、メディアセンス制御をオフにしてください。

netsh interface ipv6 set global dhcpmediasense=disabled

ESMPRO/AutomaticRunningController との連携について

ESMPRO/AutomaticRunningController (以降 ESMPRO/AC と略します) と連携動作させる場合は、CLUSTERPRO の構築/設定に次の留意事項があります。これらが満たされていないと、ESMPRO/AC との連携機能が正しく動作しないことがあります。

- ◆ ネットワークパーティション解決リソースとして、DISK 方式のリソースのみを単独で指定 することはできません。DISK 方式を指定する場合は、必ず PING 方式、COM 方式な ど、他のネットワークパーティション解決方式のリソースと組み合わせて指定してください。
- ◆ ディスク TUR 監視リソースを作成する際は、[最終動作] の設定値はデフォルト (何もしない) から変更しないでください。
- ◆ ディスク RW 監視リソースを作成する際、[ファイル名] の設定値に共有ディスク上のパスを指定する場合は、[監視タイミング] の設定値はデフォルト (活性時) から変更しないでください。
- ◆ 復電後再起動した際、次のアラートが CLUSTERPROのマネージャ上にエントリされることがあります。上記の設定により、実際の動作に支障はありませんので無視してください。
 - 1. ID:18 モジュール名:nm メッセージ:リソース<DiskNPのリソース名>の起動に失敗しました。(サーバ名:xx)
 - 2. ID:1509
 モジュール名:rm
 メッセージ:監視 <ディスクTUR監視リソース名> は異常を検出しました。(4:デバイスオープンに失敗しました。監視先ボリュームのディスク状態を確認してください。)
- ◆ ESMPRO/AC の設定方法、留意事項等については、『CLUSTERPRO X for Windows PPガイド』の「ESMPRO/AC」の章の記述を参照してください。

ipmiutil について

- ◆ 以下の機能では、BSD ライセンスのオープンソースとして公開されている IPMI Management Utilities (ipmiutil) を使用して、各サーバの BMC ファームウェアを制御します。このため、これらの機能を利用する場合は各クラスタサーバに ipmiutil をインストールする必要があります。
 - 物理マシンの強制停止機能
 - 筐体 ID ランプ連携
- ◆ 上記の機能を使用する場合、ベースボード管理コントローラー(BMC)のマネージメント 用 LAN ポートの IP アドレスと OS が使用する IP アドレスの間で通信ができるように、 各サーバの BMC を設定してください。サーバに BMC が搭載されていない場合や、 BMC のマネージメント用のネットワークが閉塞している状態では、これらの機能は使用 できません。BMC の設定方法については、各サーバのマニュアルを参照してください。
- ◆ CLUSTERPRO に ipmiutil は添付しておりません。ipmiutil の入手方法とインストール 方法については『インストール&設定ガイド』の「第 1 章 システム構成を決定する」にある「9. BMC と ipmiutil をセットアップする」を参照してください。
- ◆ ipmiutil に関する以下の事項について、弊社は対応いたしません。ユーザ様の判断、責任にてご使用ください。
 - ipmiutil 自体に関するお問い合わせ
 - ipmiutil の動作保証
 - ipmiutil の不具合対応、不具合が原因の障害
 - 各サーバの ipmiutil の対応状況のお問い合わせ
- ◆ ご使用予定のサーバ (ハードウェア) の ipmiutil 対応可否についてはユーザ様にて事前に確認ください。ハードウェアとして IPMI 規格に準拠している場合でも、実際には ipmiutil が動作しない場合がありますので、ご注意ください。

Server Core へのインストールについて

Server Core 環境に CLUSTERPRO をインストールする場合、コマンドプロンプトから、CD 媒体のルート直下にある menu.exe を実行してください。これによりメニュー画面が表示されます。

以降の手順は通常のインストールと同様ですが、ライセンス登録で [ライセンスファイルから登録] を選択することはできません。必ず [ライセンス項目を入力して登録] を選択してください。

メール通報について

メール通報機能は、STARTTLS や SSL に対応していません。

システムディスクが接続された HBA のアクセス制限について

システムディスクが接続された HBA を[クラスタで管理する HBA 一覧]に設定すると、OS がインストールされたシステムパーティションなどにアクセス制限が行われ OS が起動しなくなる場合があります。

SAN ブート環境などにおいて、システムディスクが接続された HBA を[クラスタで管理する HBA 一覧] に設定する場合、システムパーティションを [クラスタ管理から除外するパーティション] に設定してアクセス制限の対象外とする必要があります。

詳細については『リファレンスガイド』の「第 2 章 Builder の機能」の「サーバプロパティ」を参照してください。

AWS 環境における時刻同期

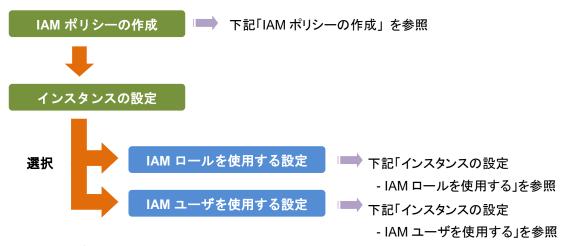
AWS Elastic IP リソース、AWS 仮想 IP リソース、AWS DNS リソース、AWS Elastic IP 監視リソース、AWS 仮想 IP 監視リソース、AWS AZ 監視リソース、AWS DNS 監視リソースでは、活性時/非活性時/監視時に AWS CLI を実行しています。

インスタンスの日時が正しく設定されていない場合、AWS CLI の実行に失敗し、「Failed in the AWS CLI command.」というメッセージが出力される場合があります。これは AWS の仕様によるものです。

この場合、インスタンスの日時を正しく設定し、NTP などにより時刻同期を取るようにしてください。 詳細は「Windows インスタンスの時刻を設定する」(http://docs.aws.amazon.com/ja_jp/AWSEC2/latest/WindowsGuide/windows-set-time.html)を参照してください。

AWS 環境における IAM の設定について

AWS 環境における IAM (Identity & Access Management)の設定について説明します。


AWS 仮想 IP リソース などのリソースおよび監視リソースは、その処理のために AWS CLI を内部で実行します。AWS CLI が正常に実行されるためには、事前に IAM の設定が必要となります。

AWS CLI にアクセス許可を与える方法として、IAM ロールを使用する方針と、IAM ユーザを使用する方針の 2 通りがあります。基本的には各インスタンスに AWS アクセスキーID、AWS シークレットアクセスキーを保存する必要がなくセキュリティが高くなることから、前者のIAM ロールを使用する方針を推奨します。

それぞれの方針のメリット・デメリットは以下のとおりです。

	メリット	デメリット
IAM ロールを使用す	セキュリティ上安全	IAM ロールを変更できないため、
る方針	キー情報の管理が簡単	後からインスタンス別のアクセス
		権限設定ができない。
IAMユーザを使用す	後からインスタンス別のアクセ	キー情報漏えいのリスクが高い
る方針	ス権限設定が可能	キー情報の管理が煩雑

IAM の設定手順は次の通りです。

IAM ポリシーの作成

AWS の EC2 や S3 などのサービスへのアクションに対するアクセス許可を記述したポリシーを作成します。CLUSTERPRO の AWS 関連リソースおよび監視リソースが AWS CLIを実行するために許可が必要なアクションは以下のとおりです。

必要なポリシーは将来変更される可能性があります。

◆ AWS 仮想 IP リソース/AWS 仮想 IP 監視リソース

アクション	説明
ec2:Describe*	VPC、ルートテーブル、ネットワークインタフェースの情報を取得する時に必要です。
ec2:ReplaceRoute	ルートテーブルを更新する時に必要です。

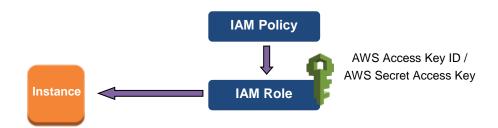
◆ AWS Elastic IP リソース/AWS Elastic IP 監視リソース

アクション	説明
ec2:Describe*	EIP、ネットワークインタフェースの情報を取得する時に必
	要です。
ec2:AssociateAddress	EIPを ENI に割り当てる際に必要です。
ec2:DisassociateAddress	EIPを ENI から切り離す際に必要です。

◆ AWS AZ 監視リソース

アクション	説明
ec2:Describe*	アベイラビリティゾーンの情報を取得する時に必要です。

◆ AWS DNS リソース/AWS DNS 監視リソース


アクション	説明
route53:ChangeResourceRecordSets	リソースレコードセットの追加、削除、設定内容の更新する時に必要です。
route53:ListResourceRecordSets	リソースレコードセット 情報の取得をする時に必要です。

以下のカスタムポリシーの例では全ての AWS 関連リソースおよびモニタリソースが使用する アクションを許可しています。

IAM Management Console の [Policies] - [Create Policy] で カスタムポリシーを作成できます。

インスタンスの設定 - IAM ロールを使用する

IAM ロールを作成し、インスタンスに付与することで AWS CLI を実行可能にする方法です。

1) IAM ロールを作成します。作成したロールに IAM ポリシーをアタッチします。

IAM Management Console の [Roles] - [Create New Role] で IAM ロールを作成できます。

- 2) インスタンス作成時に、「IAM Role」に作成した IAM ロールを指定します。(インスタンス 作成完了後に IAM ロールを後から付与することはできません)
- 3) インスタンスにログオンします。
- 4) Python をインストールします。

CLUSTERPRO が必要とする Python をインストールします。まず、Python がインストールされていることを確認します。未インストールの場合、以下から Python 2.7.x をダウンロードして、インストールします。インストール後、コントロールパネルにおいて環境変数 PATH に python.exe へのパスを追加します(通常、C:\Python27 にインストールされます)。

https://www.python.org/downloads/

5) AWS CLI をインストールします

以下から AWS CLI MSI Installer をダウンロードして、インストールします。環境変数 PATH にはインストーラが自動的に追加します。

http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-msi-on-windows

※pip でのインストールには対応しておりません。

AWS CLI のセットアップ方法に関する詳細は下記を参照してください。

http://docs.aws.amazon.com/cli/latest/userguide/installing.html

(Python または AWS CLI のインストールを行った時点ですでに CLUSTERPRO がインストール済の場合は、OS を再起動してから CLUSTERPRO の操作を行ってください。)

6) Administrator ユーザでコマンドプロンプトを起動し、以下のコマンドを実行します。

> aws configure

質問に対して AWS CLI の実行に必要な情報を入力します。AWS アクセスキー ID、AWS シークレットアクセスキーは入力しないことに注意してください。

AWS Access Key ID [None]: (Enterのみ)
AWS Secret Access Key [None]: (Enterのみ)
Default region name [None]: <既定のリージョン名>
Default output format [None]: text

誤った内容を設定してしまった場合は、%SystemDrive%¥Users¥Administrator¥.awsをディレクトリごと消去してから上記操作をやり直してください。

<u>インスタンスの設定 – IAM ユーザを使用する</u>

IAM ユーザを作成し、そのアクセスキーID、シークレットアクセスキーをインスタンス内に保存することで AWS CLI を実行可能にする方法です。インスタンス作成時の IAM ロールの付与は不要です。

1) IAM ユーザを作成します。作成したユーザに IAM ポリシーをアタッチします。

IAM Management Console の [Users] - [Create New Users] で IAM ユーザを作成できます。

2) インスタンスにログオンします。

[&]quot;Default output format"は、"text"以外を指定することも可能です。

3) Python をインストールします。

CLUSTERPRO が必要とする Python をインストールします。まず、Python がインストールされていることを確認します。未インストールの場合、以下から Python 2.7.x をダウンロードして、インストールします。インストール後、コントロールパネルにおいて環境変数 PATH に python.exe へのパスを追加します(通常、 C: *Python27 にインストールされます)。

https://www.python.org/downloads/

4) AWS CLI をインストールします

以下から AWS CLI MSI Installer をダウンロードして、インストールします。環境変数 PATH にはインストーラが自動的に追加します。

http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-msi-on-windows

※pip でのインストールには対応しておりません。

AWS CLI のセットアップ方法に関する詳細は下記を参照してください。

http://docs.aws.amazon.com/cli/latest/userguide/installing.html

(Python または AWS CLI のインストールを行った時点ですでに CLUSTERPRO がインストール済の場合は、OS を再起動してから CLUSTERPRO の操作を行ってください。)

5) Administrator ユーザでコマンドプロンプトを起動し、以下のコマンドを実行します。

> aws configure

質問に対して AWS CLI の実行に必要な情報を入力します。AWS アクセスキー ID、AWS シークレットアクセスキーは作成した IAM ユーザの詳細情報画面から取得したものを入力します。

AWS Access Key ID [None]: <AWS アクセスキー>

AWS Secret Access Key [None]: <AWS シークレットアクセスキー>

Default region name [None]: <既定のリージョン名>

Default output format [None]: text

誤った内容を設定してしまった場合は、%SystemDrive%¥Users¥Administrator¥.awsをディレクトリごと消去してから上記操作をやり直してください。

Azure プローブポートリソースについて

Microsoft Azure ロードバランサの設定において、一つの正常性プローブの使用者に TCP 用 と UDP 用の負荷分散規則が混在して割り当てないようにしてください。

両方の規則が必要な場合は、異なるポートの正常性プローブを2つ用意し、TCP用とUDP用の負荷分散規則が別となるように割り当ててください。

またその場合は、Azure プローブポートリソースを 2 つ用意し、それぞれの正常性プローブのポートを[プローブポート]に指定してください。

Azure DNS リソースについて

- ◆ Azure CLI のインストール、サービス プリンシパルの作成の手順は、『CLUSTERPRO X 4.0 Microsoft Azure 向け HA クラスタ 構築ガイド (Windows 版)』を参照してください。
- ◆ Azure DNS リソースが利用するため、Azure CLI および Python のインストールが必要です。Python は、Azure CLI 2.0 をインストールすると同時にインストールされます。 Azure CLI の詳細については、以下のWeb サイトを参照してください。

Microsoft Azure のドキュメント:

https://docs.microsoft.com/ja-jp/azure/

◆ Azure DNS リソースが利用するため、Azure DNS のサービスが必要です。Azure DNS の詳細については、以下のWeb サイトを参照してください。

Azure DNS:

https://azure.microsoft.com/ja-jp/services/dns/

- ◆ CLUSTERPRO が Microsoft Azure と連携するためには、Microsoft Azure の組織アカウントが必要となります。組織アカウント以外のアカウントは Azure CLI 実行時に対話形式でのログインが必要となるため使用できません。
- ◆ Azure CLI を使用して、サービス プリンシパルを作成する必要があります。

Azure DNS リソースは Microsoft Azure にログインし、DNS ゾーンへの登録を実行します。Microsoft Azure へのログイン時、サービス プリンシパルによる Azure ログインを利用します。

サービスプリンシパルや詳細な手順については、以下のWeb サイトを参照してください。

Azure CLI から Azure へのログイン:

https://docs.microsoft.com/ja-jp/azure/xplat-cli-connect

Azure CLI 2.0 で Azure サービス プリンシパルを作成する:

https://docs.microsoft.com/ja-jp/cli/azure/create-an-azure-service-principal-azure-cli

作成されたサービスプリンシパルのロールを既定のContributor(共同作成者)から別のロールに変更する場合、Actions プロパティとして以下のすべての操作へのアクセス権を持つロールを選択してください。

この条件を満たさないロールに変更した場合、Azure DNS リソースの起動がエラーにより失敗します。

Azure CLI 2.0の場合

Microsoft.Network/dnsZones/A/write

Microsoft.Network/dnsZones/A/delete

Microsoft.Network/dnsZones/NS/read

CLUSTERPRO の構成情報作成時

CLUSTERPRO の構成情報の設計、作成前にシステムの構成に依存して確認、留意が必要な事項です。

CLUSTERPRO インストールパス配下のフォルダやファイルについて

<CLUSTERPRO インストールパス>配下にあるフォルダやファイルは、CLUSTERPRO 以外から操作(編集/作成/追加/削除など)しないでください。

CLUSTERPRO 以外からフォルダやファイルを操作した場合の影響についてはサポート対象外とします。

グループリソースの非活性異常時の最終アクション

非活性異常検出時の最終動作に [何もしない] を選択すると、グループが非活性失敗のまま 停止しません。

実際に業務で使用する際には、[何もしない] は設定しないように注意してください。

遅延警告割合

遅延警告割合を 0 または、100 に設定すれば以下のようなことを行うことが可能です。

◆ 遅延警告割合に 0 を設定した場合

監視毎に遅延警告がアラート通報されます。 この機能を利用し、サーバが高負荷状態でのモニタリソースへのポーリング時間を算出し、 モニタリソースの監視タイムアウト時間を決定することができます。

◆ 遅延警告割合に 100 を設定した場合 遅延警告の通報を行いません。

テスト運用以外で、0% 等の低い値を設定しないように注意してください。

ディスク監視リソースとハイブリッドディスク TUR 監視リソースの監視 方法 TUR について

- ◆ SCSI の Test Unit Ready コマンドをサポートしていないディスク、ディスクインターフェイス (HBA) では使用できません。 ハードウェアがサポートしている場合でもドライバがサポートしていない場合があるのでドライバの仕様も合わせて確認してください。
- ◆ Read 方式に比べて OS やディスクへの負荷は小さくなります。
- ◆ Test Unit Readyでは、実際のメディアへの I/O エラーは検出できない場合があります。

WebManager の画面更新間隔について

◆ [WebManager] タブの [画面データ更新インターバル] には、基本的に 30 秒より小さ い値を設定しないでください。30 秒より小さい値を設定すると、CLUSTERPRO のパ フォーマンスに影響を与えるおそれがあります。

ハートビートリソースの設定について

- ◆ カーネルモード LAN ハートビートリソースは最低 1 つ設定する必要があります。
- ◆ インタコネクト専用の LAN をカーネルモード LAN ハートビートリソースとして登録し、さらにパブリック LAN もカーネルモード LAN ハートビートリソースとして登録することを推奨します (カーネルモード LAN ハートビートリソースを 2 つ以上設定することを推奨します)。
- ◆ BMC ハートビートリソースを使用する場合、BMC のハードウェアやファームウェアが BMC ハートビートに対応している必要があります。利用可能な BMC については「第 3 章CLUSTERPRO の動作環境」の「Express5800/A1080a,A1040a シリーズとの連携 に対応したサーバ」を参照してください。
- ◆ ハートビートタイムアウト時間は OS 再起動の所要時間より短くする必要があります。こ の条件を満たさない場合、クラスタ内の一部のサーバがリブートした際に、それを他の サーバが正しく検出できず、リブート後に動作異常が発生する場合があります。

統合 WebManager 用 IP アドレス (パブリック LAN IP アドレス) の 設定について

◆ CLUSTERPRO X2.1 以前のバージョンの [パブリック LAN IP アドレス] の設定は [クラスタプロパティ] - [WebManager タブ] の [統合 WebManager 用 IP アドレス] で設定できます。

スクリプトのコメントなどで取り扱える 2 バイト系文字コードについて

◆ CLUSTERPRO では、Windows 環境で編集されたスクリプトは Shift-JIS、Linux 環境 で編集されたスクリプトは EUC として扱われます。その他の文字コードを利用した場合、 環境によっては文字化けが発生する可能性があります。

グループの起動可能サーバに設定可能なサーバグループ数について

◆ 1つのグループの起動可能サーバに設定可能なサーバグループ数は 2 となっています。 3 つ以上のサーバグループを設定した場合、CLUSTERPRO Disk Agent サービス (clpdiskagent.exe) が正しく動作しない可能性があります。

JVM監視の設定について

- ◆ 監視対象がWebLogicの場合、JVM監視リソースの以下の設定値については、システム 環境(メモリ搭載量など)により、設定範囲の上限に制限がかかることがあります。
 - [ワークマネージャのリクエストを監視する]-[リクエスト数]
 - 「ワークマネージャのリクエストを監視する]-[平均値]
 - [スレッドプールのリクエストを監視する]-[待機リクエスト リクエスト数]
 - [スレッドプールのリクエストを監視する]-[待機リクエスト 平均値]
 - [スレッドプールのリクエストを監視する]-[実行リクエスト リクエスト数]
 - ・ [スレッドプールのリクエストを監視する]-[実行リクエスト 平均値]
- ◆ Java Resource Agentを使用するには、「CLUSTERPRO の動作環境」の「JVM監視の動作環境」に記載しているJRE(Java Runtime Environment)もしくはJDK(Java Development Kit)をインストールしてください。監視対象(WebLogic ServerやWebOTX)が使用するJREやJDKと同じ物件を使用することも、別の物件を使用することも可能です。1つのサーバにJREとJDKの両方をインストールしている場合、どちらを使用することも可能です。
- ◆ モニタリソース名に空白を含まないでください。
- ◆ 異常検出時に障害原因別にコマンドを実行するための[コマンド]とロードバランサ連携機能は併用できません。

システム監視の設定について

◆ リソース監視の検出パターン

System Resource Agent では、「しきい値」、「監視継続時間」という2つのパラメータを組み合わせて検出を行います。

各システムリソース(メモリ使用量、CPU 使用率、仮想メモリ使用量)を継続して収集し、 一定時間(継続時間として指定した時間)しきい値を超えていた場合に異常を検出しま す。

PostgreSQL監視の設定について

◆ モニタリソース名に空白を含まないでください。

AWS Elastic IPリソースの設定について

- ◆ データミラー構成のみ可能です。共有ディスク構成、ハイブリッド構成はサポートしていません。
- ◆ IPv6はサポートしていません。
- ◆ AWS 環境では、フローティング IP リソース、フローティング IP 監視リソース、仮想 IP リソース、仮想 IP 監視リソース、仮想コンピュータ名リソース、仮想コンピュータ名監視リソースは利用できません。
- ◆ AWS Elastic IPリソースはASCII文字以外の文字に対応していません。下記のコマンドの 実行結果にASCII文字以外の文字が含まれないことを確認してください。

aws ec2 describe-addresses --allocation-ids <EIP ALLOCATION ID>

AWS 仮想IPリソースの設定について

- ◆ データミラー構成のみ可能です。共有ディスク構成、ハイブリッド構成はサポートしていません。
- ◆ IPv6はサポートしていません。
- ◆ AWS 環境では、フローティング IP リソース、フローティング IP 監視リソース、仮想 IP リソース、仮想 IP 監視リソース、仮想コンピュータ名リソース、仮想コンピュータ名監視リソースは利用できません。
- ◆ AWS 仮想 IPリソースはASCII文字以外の文字に対応していません。下記のコマンドの 実行結果にASCII文字以外の文字が含まれないことを確認してください。

```
aws ec2 describe-vpcs --vpc-ids <VPC ID>
aws ec2 describe-route-tables --filters Name=vpc-id, Values=<VPC ID>
aws ec2 describe-network-interfaces --network-interface-ids <ENI ID>
```

◆ AWS 仮想IPリソースは、VPC ピアリング接続を経由してのアクセスが必要な場合では 利用することができません。これは、VIP として使用する IP アドレスが VPC の範囲外 であることを前提としており、このような IP アドレスは VPC ピアリング接続では無効と みなされるためです。VPC ピアリング接続を経由してのアクセスが必要な場合は、 Amazon Route 53 を利用する AWS DNS リソースを使用してください。

AWS DNS リソースの設定について

- ◆ データミラー構成のみ可能です。共有ディスク構成、ハイブリッド構成はサポートしていません。
- ◆ IPv6はサポートしていません。
- ◆ AWS 環境では、フローティング IP リソース、フローティング IP 監視リソース、仮想 IP リソース、仮想 IP 監視リソース、仮想コンピュータ名リソース、仮想コンピュータ名監視リソースは利用できません。

AWS DNS 監視リソースの設定について

- ◆ AWS DNS 監視リソースは、監視時に AWS CLI を実行します。実行する AWS CLI のタイムアウトは、AWS DNS リソースで設定した [AWS CLI タイムアウト] を利用します。
- ◆ AWS DNS リソースの活性直後、以下の事象により AWS DNS モニタリソースによる監視が失敗する可能性があります。この場合、AWS DNS モニタリソースの [監視開始待ち時間] を Amazon Route 53 における DNS 設定の変更が反映される時間より長く設定してください(https://aws.amazon.com/jp/route53/faqs/)。
 - 1. AWS DNS リソースの活性時、レコードセットの追加や更新をする。
 - 2. Amazon Route 53 における DNS 設定の変更が反映される前に、AWS DNS 監視リソースが監視を実行すると名前解決ができないため監視に失敗する。DNS リゾルバキャッシュが有効な間は、その後も AWS DNS 監視リソースは監視に失敗する。
 - 3. Amazon Route 53 における DNS 設定の変更が反映される。
 - 4. AWS DNS リソースの [TTL] の有効期間が経過すると名前解決に成功するため、 AWS DNS 監視リソースの監視が成功する。

Azure プローブポートリソースの設定について

- ◆ 2ノード構成のみサポートしています。
- ◆ データミラー構成のみ可能です。共有ディスク構成、ハイブリッド構成はサポートしていません。
- ◆ IPv6はサポートしていません。
- ◆ Microsoft Azure 環境では、フローティング IP リソース、フローティング IP 監視リソース、仮想 IP リソース、仮想 IP 監視リソース、仮想コンピュータ名リソース、仮想コンピュータ名監視リソースは利用できません。

Azure ロードバランス監視リソースの設定について

Azure ロードバランスモニタリソースが異常を検知した場合、Azureのロードバランサからの現用系と待機系の切り替えが正しく行われない可能性があります。そのため、Azure ロードバランスモニタリソースの[最終動作]には[クラスタサービス停止と OS シャットダウン]を選択することを推奨とします。

Azure DNS リソースの設定について

- ◆ データミラー構成のみ可能です。共有ディスク構成、ハイブリッド構成はサポートしていません。
- ◆ IPv6はサポートしていません。
- ◆ Microsoft Azure 環境では、フローティング IP リソース、フローティング IP 監視リソース、仮想 IP リソース、仮想 IP 監視リソース、仮想コンピュータ名リソース、仮想コンピュータ名監視リソースは利用できません。

Windows Server 2012 ベースのシステムにおけるサービス失敗時の回復操作について

Windows Server 2012 ベースのシステムにおいて、サービスが失敗(異常終了)した時に行われる回復操作として[コンピューターを再起動する]が設定されている場合、実際にサービスが失敗した際の動作が従来(Windows Server 2008以前)のOS再起動からSTOPエラーを伴うOS再起動へ変更されています。

本件の詳細については、下記の情報を参照してください。 参考:http://support.microsoft.com/kb/2848819

回復操作として既定で[コンピューターを再起動する]が設定されているCLUSTERPRO のサービスは下記です。

- ◆ CLUSTERPRO Disk Agent サービス
- ◆ CLUSTERPRO Server サービス
- ◆ CLUSTERPRO Transaction サービス

OS のネットワーク負荷分散機能との共存について

OS のネットワーク負荷分散 (NLB) 機能にて使用している NIC に追加された IP アドレスは、NLB の仮想 IP アドレスとして認識されます。

この仮想 IP アドレスは NLB クラスタ内の全てのサーバにて付与されているものとして扱われます。

該当の NIC に対してフローティング IP アドレスが付与された場合、フローティング IP アドレスも仮想 IP アドレスとして認識されます。

このフローティング IP アドレスに対してアクセスした場合も、NLB の機能によって負荷分散が行われますが、フローティング IP アドレスは待機系の NIC には付与されていないため、フローティング IP アドレスに対するアクセスが異常となることがあります。

CLUSTERPRO 運用後

クラスタとして運用を開始した後に発生する事象で留意して頂きたい事項です。

回復動作中の操作制限

モニタリソースの異常検出時の設定で回復対象にグループリソース (ディスクリソース、アプリケーションリソースなど) を指定し、モニタリソースが異常を検出した場合の回復動作遷移中 (再活性化 → フェイルオーバ → 最終動作) には、WebManager やコマンドによる以下の操作は行わないでください。

- ◆ クラスタの停止/サスペンド
- ◆ グループの開始/停止/移動

モニタリソース異常による回復動作遷移中に上記の制御を行うと、そのグループの他のグループリソースが停止しないことがあります。

また、モニタリソース異常状態であっても最終動作実行後であれば上記制御を行うことが可能です。

コマンドリファレンスに記載されていない実行形式ファイルやスクリプト ファイルについて

インストールディレクトリ配下にコマンドリファレンスに記載されていない実行形式ファイルやスクリプトファイルがありますが、CLUSTERPRO 以外からは実行しないでください。

実行した場合の影響については、サポート対象外とします。

クラスタシャットダウン・クラスタシャットダウンリブート

ミラーディスク使用時は、グループ活性処理中に [clpstdn] コマンドまたは WebManager からクラスタシャットダウン,クラスタシャットダウンリブートを実行しないでください。

グループ活性処理中はグループ非活性ができません。このため、ミラーディスクリソースが正常に非活性されていない状態で OS がシャットダウンされ、ミラーブレイクが発生することがあります。

特定サーバのシャットダウン、リブート

ミラーディスク使用時は、コマンドまたは WebManager からサーバのシャットダウン,シャットダウンリブートコマンドを実行するとミラーブレイクが発生します。

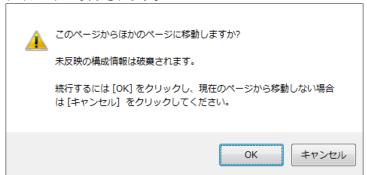
ネットワークパーティション状態からの復旧

ネットワークパーティションが発生している状態では、クラスタを構成するサーバ間で互いの状態が確認できないため、この状態でグループの操作 (起動/停止/移動) を行ったり、サーバを再起動したりすると、サーバ間でクラスタの状態についての認識にずれが生じます。このように異なる状態認識のサーバが複数起動している状態でネットワークが復旧すると、その後のグループ操作が正しく動作しなくなりますので、ネットワークパーティション状態にある間は、ネットワークから切り離された(クライアントと通信できない)方のサーバはシャットダウンするか、CLUSTERPRO Server サービスを停止しておき、ネットワークが復旧してから再起動してクラスタに復帰してください。万一、複数のサーバが起動した状態でネットワークが復旧した場合は、クラスタの状態認識が異なるサーバを再起動することにより、正常状態に復帰できます。

なお、ネットワークパーティション解決リソースを使用している場合は、ネットワークパーティションが発生しても、通常はいずれかの(あるいは全ての)サーバが緊急シャットダウンして、互いに通信できないサーバが複数起動するのを回避します。緊急シャットダウンされたサーバを手動で再起動したり、緊急シャットダウン時の動作を再起動に設定していたりした場合も、再起動したサーバは再度緊急シャットダウンされます(Ping 方式や多数決方式の場合はCLUSTERPRO Server サービスが停止されます)。ただし、DISK 方式で複数のディスクハートビート用パーティションを使用している場合、ディスクパス障害によりディスクを介した通信ができない状態でネットワークパーティションが発生すると、両サーバが保留状態で動作を継続する場合があります。

WebManager について

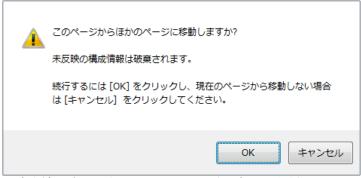
- ◆ WebManager の [クライアントデータ更新方法] の設定が、[Polling] に設定されている 場合、WebManager で表示される内容は定期的に更新され、状態が変化しても即座に は表示に反映されません。最新の情報を取得したい場合、[リロード] を選択して最新の 内容を取得してください。
- ◆ WebManager が情報を取得中にサーバダウン等発生すると、情報の取得に失敗し、一部オブジェクトが正しく表示できない場合があります。 WebManager の [クライアントデータ更新方法] の設定が、[Polling] に設定されている場合、次回の自動更新まで待つか、[リロード] を選択して最新の内容を再取得してください。[Realtime] に設定されている場合、自動的に最新の内容に更新されます。
- ◆ CLUSTERPRO のログ収集は複数の WebManager から同時に実行することはできません。
- ◆ 接続先と通信できない状態で操作を行うと、制御が戻ってくるまでしばらく時間が必要な 場合があります。
- ◆ マウスポインタが処理中を表す、腕時計や砂時計になっている状態で、ブラウザ外にカーソルを移動すると、処理中であってもカーソルが矢印の状態にもどってしまうことがあります。
- ◆ Proxy サーバを経由する場合は、WebManager のポート番号を中継できるように、 Proxy サーバの設定をしてください。
- ◆ Reverse Proxy サーバを経由する場合、WebManager は正常に動作しません。
- ◆ CLUSTERPRO のアップデートを行った場合、起動している全てのブラウザを一旦終了してください。


Java のキャッシュ (ブラウザ側のキャッシュではありません) をクリアし、ブラウザを起動してください。

◆ Javaのアップデートを行った場合、起動している全てのブラウザを一旦終了してください。 Java のキャッシュ(ブラウザ側のキャッシュではありません)をクリアして、ブラウザを 起動してください。

Builder について

す。


- ◆ 以下の製品とはクラスタ構成情報の互換性がありません。
 - CLUSTERPRO X 4.0 for Windows 以外の Builder
 - CLUSTERPRO for Linux の Builder
 - CLUSTERPRO for Windows Value Edition Φ Builder
- ◆ 本製品より新しいバージョンで作成されたクラスタ構成情報は、本製品で利用することは できません。
- ◆ CLUSTERPRO X1.0/2.0/2.1/3.0/3.1/3.2/3.3/4.0 for Windows のクラスタ構成情報は本製品で利用することができます。 利用する場合は、Builder の [ファイル] メニューで [設定のインポート] をクリックしま
- ◆ Web ブラウザを終了すると (メニューの [終了] やウィンドウフレームの [X] 等)、確認 ダイアログが表示されます。

設定を続行する場合は [キャンセル] を選択してください。

注:JavaScript を無効にしている場合、本画面は表示されません。

♦ Web ブラウザをリロードすると (メニューの [最新の情報に更新] やツールバーの [現在のページを再読み込み]等)、確認ダイアログが表示されます。

設定を続行する場合は [キャンセル] を選択してください。

注:JavaScript を無効にしている場合、本画面は表示されません。

◆ Reverse Proxy サーバを経由する場合、Builder は正常に動作しません。

CLUSTERPRO Disk Agent サービスについて

CLUSTERPRO Disk Agent サービスは停止しないでください。停止した場合、手動での起動はできません。OS を再起動し CLUSTERPRO Disk Agent サービスを起動しなおす必要があります。

ミラー構築中のクラスタ構成情報の変更について

ミラー構築中 (初期構築を含む) はクラスタ構成情報を変更しないでください。クラスタ構成情報を変更した場合、ドライバが不正な動作を行う場合があります。

ミラーディスクの待機系のクラスタ復帰について

ミラーディスク活性時に待機系がクラスタサービス(CLUSTERPRO Server サービス)を停止した状態で稼動していた場合、サービスを開始してクラスタに復帰する前に一度待機系サーバを再起動してください。そのまま復帰させるとミラーの差分情報が不正となり、ミラーディスクに不整合が生じます。

ミラーディスク-ハイブリッドディスク間の構成変更について

ミラーディスクリソースでミラーリングしていたディスクをハイブリッドディスクリソースでミラーリングするように構成変更する場合、まず既存のミラーディスクリソースを削除した構成情報をアップロードして、既存のリソースが削除された状態に変更してから、ハイブリッドディスクリソースを追加した構成情報をアップロードしてください。ハイブリッドディスクをミラーディスクに変更する場合も同様です。

上記の手順で既存のリソースを削除せずに、新規のリソースに入れ替えた構成情報をアップロードした場合、ディスクミラーリングの設定変更が正しく行えず不正な動作を行う場合があります。

[chkdsk] コマンドとデフラグについて

ディスクリソースで制御している共有ディスク上の切替パーティションや、ミラーディスクリソースでミラーリングしているデータパーティションに対して、[chkdsk] コマンドやデフラグを実行する場合、リソースが起動済みのサーバで実行する必要があります。起動していない状態では、アクセス制限により実行できません。

また、[chkdsk] コマンドを修復モード (/f オプション) で実行する場合、対象パーティション上のファイルやフォルダが開かれていると実行が失敗するため、フェイルオーバグループを停止し、対象のディスクリソース/ミラーディスクリソースを単体起動した状態で実行します。もし対象パーティションに対して監視を行うディスク RW 監視リソースがある場合は、このモニタリソースを一時停止しておく必要があります。

インデックスサービスについて

インデックスサービスのカタログに共有ディスク/ミラーディスク上のディレクトリを作成して、共有ディスク/ミラーディスク上のフォルダに対してインデックスを作成する場合、インデックスサービスを手動起動に設定して、共有ディスク/ミラーディスクの活性後に起動するように CLUSTERPRO から制御する必要があります。インデックスサービスを自動起動にしていると、インデックスサービスが対象ボリュームを OPEN することにより、その後の活性化処理においてマウント処理が失敗し、アプリケーションやエクスプローラからのディスクアクセスが [パラメータが間違っています](エラーコード 87)というエラーで失敗します。

Windows Server 2012 以降の環境におけるユーザーアカウント制御の影響について

Windows Server 2012 以降では、既定値でユーザーアカウント制御 (User Account Control, 以下 UAC と略します) が有効となっています。UAC が有効となっている場合、下記の機能に影響があります。

モニタリソース

下記のモニタリソースに影響があります。

Oracle 監視リソース

Oracle 監視リソースにおいて「認証方式」を [OS 認証] とした場合、監視ユーザに Administrators グループ以外のユーザが設定されていると、Oracle 監視の処理は失敗します。

「認証方式」に [OS 認証] を設定する場合は、「監視ユーザ」に設定するユーザは Administrators グループに属するようにしてください。

アプリケーションリソース / スクリプトリソースの画面表示について

CLUSTERPRO のアプリケーションリソース・スクリプトリソースから起動したプロセスはセッション 0 で実行されるため、GUI を持つプロセスを起動した場合、[対話型サービスダイアログの検出] ポップアップが表示され、このポップアップで [メッセージを表示する] を選択しないと GUI が表示されません。

ネットワークインターフェイスカード (NIC) が二重化されている環境について

NIC が二重化されている環境の場合、OS 起動時の NIC の初期化に時間がかかることがあります。初期化が完了する前にクラスタが起動すると、カーネルモード LAN ハートビートリソース (lankhb) の起動に失敗することがあります。この場合、NIC の初期化が完了しても、カーネルモード LAN ハートビートリソースの状態は正常に戻りません。この状態から復旧させるためには、クラスタをサスペンドした後、クラスタをリジュームする必要があります。

また、上記の現象を回避するためにネットワーク初期化完了待ち時間の設定、または ARMDELAY コマンドでクラスタの起動を遅らせることを推奨します。

- ◆ ネットワーク初期化完了待ち時間 クラスタを構成する全サーバで共通の設定です。設定した時間に達していない場合で も、ネットワークの初期化が完了すると、クラスタの起動を開始します。
- ◆ ARMDELAY コマンド クラスタを構成する各サーバの個別の設定です。設定した時間に達していない場合、 ネットワークの初期化が完了しても、クラスタの起動を開始しません。

ネットワーク初期化完了待ち時間、ARMDELAY コマンドの詳細については、『リファレンスガイド』を参照してください。

CLUSTERPROのサービスのログオンアカウントについて

CLUSTERPRO のサービスのログオンアカウントは [ローカル システム アカウント] に設定されています。このログオンアカウントの設定を変更すると、クラスタとして正しく動作しない可能性があります。

CLUSTERPROの常駐プロセスの監視について

プロセスを監視するようなソフトウェアにより、CLUSTERPRO の常駐プロセスを監視すること 自体には問題はありませんが、プロセスの異常終了時などにプロセスの再起動などの回復動 作は行わないでください。

外部連携モニタリソースについて

- ◆ 外部連携モニタリソースに異常を通知するには、[clprexec] コマンドを用いる方法、BMC 連携機能を用いる方法、サーバ管理基盤連携機能を用いる方法の三つの方法があります。
- ◆ [clprexec] コマンドを用いる場合は CLUSTERPRO CD に同梱されているファイルを利用します。通知元サーバの OS やアーキテクチャに合わせて利用してください。また、通知元サーバと通知先サーバの通信が可能である必要があります。
- ◆ BMC 連携機能を利用する場合、BMC のハードウェアやファームウェアが対応している 必要があります。利用可能な BMC については本ガイドの58ページ「第 3 章 CLUSTERPRO の動作環境」の「Express5800/A1080a,A1040a シリーズとの連携に 対応したサーバ」を参照してください。また、BMC の管理用 IP アドレスから OS の IP アドレスへの通信が可能である必要があります。

JVM監視リソースについて

- ◆ 監視対象のJava VMを再起動する場合はJVM監視リソースをサスペンドするか、クラスタ 停止を行った後に行ってください。
- ◆ 設定内容を変更時にクラスタサスペンドおよびクラスタリジュームを行う必要があります。
- ◆ モニタリソースの遅延警告には対応していません。

システム監視リソースについて

- ◆ 設定内容を変更時にクラスタサスペンドを行う必要があります。
- ◆ モニタリソースの遅延警告には対応していません。
- ◆ 動作中に OS の日付/時刻を変更した場合、10 分間隔で行っている解析処理のタイミングが日付/時刻変更後の最初の 1 回だけずれてしまいます。以下のようなことが発生するため、必要に応じてクラスタのサスペンド・リジュームを行ってください。
 - 異常として検出する経過時間を過ぎても、異常検出が行われない。
 - 異常として検出する経過時間前に、異常検出が行われる。
- ◆ ディスクリソース監視機能で同時に監視できる最大のディスク数は 26 台です。

ミラー統計情報採取機能と OS 標準機能との連携に伴うイベントログ 出力について

- 内部バージョン 11.16 以前からアップデートした環境の場合、アプリケーションイベントロ グに下記のエラーが出力されることがあります。
 - > イベントID:1008

ソース:Perflib

メッセージ:サービス "clpdiskperf" (DLL "<CLUSTERPRO インストールパス >\pi bin\pi clpdiskperf.dll") の Open プロシージャに失敗しました。このサービスのパフォーマンス データは利用できません。データ セクションの最初の 4 バイト (DWORD) に、エラー コードが含まれています。

ミラー統計情報採取機能と OS 標準機能との連携機能を使用する場合、コマンドプロンプトから以下のコマンドを実行することで、本メッセージが出力されなくなります。

> lodctr.exe <CLUSTERPRO インストールパス>\perf\clpdiskperf.ini

連携機能を使用しない場合、本メッセージが出力されても CLUSTERPRO およびパフォーマンスモニタの動作に支障はありませんが、本メッセージの出力が多発する場合はコマンドプロンプトから以下の2つのコマンドを実行することで、本メッセージが出力されなくなります。

> unlodctr.exe clpdiskperf

> reg delete

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\clpdiskperf

- ミラー統計情報採取機能と OS 標準機能との連携機能が有効化されている場合、アプリケーションイベントログに下記のエラーが出力されることがあります。
 - ➤ イベントID:4806 ソース:CLUSTERPRO X メッセージ:パフォーマンスモニタのプロセス数が多すぎるため、ミラー統計情報は採

連携機能を使用しない場合、本メッセージが出力されても CLUSTERPRO およびパフォーマンスモニタの動作に支障はありませんが、本メッセージの出力が多発する場合はコマンドプロンプトから以下の2つのコマンドを実行することで、本メッセージが出力されなくなります。

> unlodctr.exe clpdiskperf

> reg delete

 ${\tt HKEY_LOCAL_MACHINE \$SYSTEM \$ Current Control Set \$ Services \$ clpd is kperf}$

なお、ミラー統計情報採取機能と OS 標準機能との連携機能については、以下を参照してください。

『リファレンスガイド』

第 10 章 保守情報

ミラー統計情報採取機能

ミラー統計情報採取機能とOS 標準機能との連携

[対話型サービスダイアログの検出]ポップアップ表示について

アプリケーションリソース/スクリプトリソースの[デスクトップとの対話を許可する]を設定し、[対話型サービスダイアログの検出]ポップアップを表示させるには「Interactive Service Derection」サービスが起動している必要があります。

既定値で「Interactive Service Derection」サービスの起動が無効となっているため、以下の手順に従い有効化してください。

参考: http://msdn.microsoft.com/en-us/library/windows/desktop/ms683502(v=vs.85).aspx
→[Using an Interactive Service]

AWS 環境におけるAMIのリストアについて

AWS 仮想 IP リソースや AWS Elastic IP リソースの [ENI ID] にプライマリネットワークインターフェイスの ENI ID を設定している場合、AMI などからのリストア時には、AWS 仮想 IP リソースや AWS Elastic IP リソースの設定を変更する必要があります。

なお、セカンダリネットワークインターフェイスの ENI ID を設定している場合、AMI などから のリストア時にはデタッチ/アタッチ処理によって同一 ENI ID の引き継ぎが可能なため、AWS 仮想 IP リソースや AWS Elastic IP リソースの再設定は不要です。

CLUSTERPROの構成変更時

クラスタとして運用を開始した後に構成を変更する場合に発生する事象で留意して頂きたい事項です。

グループ共通プロパティの排他ルールについて

排他ルールの排他属性を変更した場合、クラスタサスペンド、リジュームにより変更が反映されます。

排他属性が「完全排他」に設定されている排他ルールに、新たに排他対象のグループを追加した場合、サスペンド前のグループの起動状態により完全排他のグループが同一サーバ上で複数起動した状態になることがあります。

次回グループ起動時から正しく排他制御が行われるようになります。

リソースプロパティの依存関係について

リソースの依存関係を変更した場合、クラスタサスペンド、リジュームにより変更が反映されます。

リソースの依存関係と反映方法としてリソース停止が必要な設定変更をした場合、リジューム 後のリソースの起動状態が依存関係を考慮したものになっていない場合があります。

次回グループ起動時から正しく依存関係の制御が行われるようになります。

グループリソースの追加、削除について

同一グループリソース名を別のグループへ移す設定変更を行う場合、以下の手順にて行って ください。

以下の手順にて行わなかった場合、正常に動作できなくなる可能性があります。

例) フローティング IP リソース fip1 をグループ failover1 から別のグループ failover2 に移す場合

- 1. グループ failover1 から fip1 を削除します。
- 2. 設定の反映を行います。
- 3. fip1 をグループ failover2 へ追加します。
- 4. 設定の反映を行います。

CLUSTERPROアップグレード時

クラスタとして運用を開始した後に CLUSTERPRO X 3.3 (内部バージョン 11.35) からアップ グレードする際に留意して頂きたい事項です。

管理ツールについて

既定の管理ツールを Cluster WebUI に変更いたしました。従来の WebManager をご利用の場合は、Cluster WebUI の [WebManager] をクリックしていただくか、http://管理用グループの管理 IP アドレスまたは CLUSTERPRO Server をインストールしたサーバの実 IP アドレス:ポート番号 (既定値 29003)/main.htm を Web ブラウザに指定してください。

X3.3 から削除された機能一覧

X 3.3 (内部バージョン 11.35) に存在し、X4.0 にて削除された機能について、以下に示します。

- ◆ WebManager Mobile
- ◆ VB Corp CL 監視リソース
- ◆ VB Corp SV 監視リソース
- ◆ OracleAS 監視リソース

パラメータ削除一覧

Builder で設定可能なパラメータのうち、X 3.3 (内部バージョン 11.35) から削除されたものについて、以下の表に示します。

パラメータ	X 3.3 の既定値
クラスタのプロパティ	
WebManager タブ	
WebManager Mobile の接続を許可する	オフ
WebManager Mobile 用パスワード	
操作用パスワード	-
参照用パスワード	-
JVM 監視リソースのプロパティ	
メモリタブ([JVM 種別]に[Oracle Java]を選択した場合)	
仮想メモリ使用量を監視する	2048[メガバイト]
メモリタブ([JVM 種別]に[Oracle Java(usage monitoring)]を選択した場合)	
仮想メモリ使用量を監視する	2048[メガバイト]
ユーザ空間監視リソースのプロパティ	
監視 (固有) タブ	
ハートビートのインターバル/タイムアウトを使用する	オン

既定值変更一覧

Builder で設定可能なパラメータのうち、X 3.3 (内部バージョン 11.35) の既定値から差異があるものについて、以下の表に示します。

- ◆ [X3.3 の既定値] の値を設定していた場合、アップグレード後は [X4.0 の既定値] で動作 します。
- ◆ アップグレード後も [X3.3 の既定値] の設定を継続したい場合は、アップグレード後に改めてその値に再設定してください。
- ◆ [X3.3 の既定値] 以外の値を設定していた場合、アップグレード後もそれ以前の設定値が 継承されます。再設定の必要はありません。

パラメータ	X 3.3 の 既定値	X 4.0 の 既定値	備考
クラスタのプロパティ			
JVM 監視タブ			
最大Javaヒープサイズ	7[MB]	16[MB]	
拡張タブ			
フェイルオーバ回数のカウント単位	クラスタ	サーバ	
リソース共通のプロパティ			
復旧動作タブ			
フェイルオーバしきい値	サーバ数に合わせる	1 [回]	[クラスタプロパ ティ] - [拡張タブ] - [フェイルオー バ回数のカウン ト単位]の既定値 変更に伴う変 更。
アプリケーションリソースのプロパティ			
依存関係タブ			

パラメータ	X 3.3 の 既定値	X 4.0 の 既定値	備考
既定の依存関係に従う	オン ・フローティング IP リソース ・仮想 IP リソース ・仮想 コンピュータ名リソース ・ディスグリッドディスブリッドディスクリンース ・バース ディスクリンース ・プリント フリンース ・レジストリ同期ス ・LU ジストリリース ・NAS リソース ・AWS Elastic IPリソース ・AWS 仮想IPリソポース ・Azure プリンース	・仮想 IP リソース ・仮想 コンピュータ名リソース ・ディスクリソース ・バイブリッドディスクリソース ・ミラーディスクリソース ・ミラーディスクリソース ・プリントスプーラリソース ・レジストリ同期リソース ・CIFS リソース ・NAS リソース ・AWS Elastic IPリソース ス ・AWS 仮想IPリソース ・AWS DNS リソース	
レジストリ同期リソースのプロパティ			
依存関係タブ			
既定の依存関係に従う	オン ・CIFS リソース ・NAS リソース ・ディスクリソース ・ディスクリソース ・アイブリッドディスクリソース ・フローティング IP リソース ・プリントスプーラリソース ・ミラーディスクリソース ・仮想コンピュータ名リソース ・AWS Elastic IPリソース ・AWS 仮想IPリソース ・Azure プローブポート リソース	オン ・CIFS リソース ・NAS リソース ・ディスクリソース ・ディスクリソース ・バイブリッドディスクリソース ・フローティング IP リソース ・プリントスプーラリソース ・ミラーディスクリソース ・仮想 IP リソース ・仮想 コンピュータ名リソース ・AWS Elastic IPリソース ・AWS DNS リソース ・Azure プローブポート リソース ・Azure DNS リソース	
スクリプトリソースのプロパティ			
依存関係タブ			

パラメータ	X 3.3 の 既定値	X 4.0 の 既定値	備考
既定の依存関係に従う	オン ・CIFS リソース ・NAS リソース ・ディスクリソデディスス ・バース ・バース ・バース ・バース ・バース ・バース ・バース ・バ	オン ・CIFS リソース ・NAS リソース ・NAS リソース ・ディイブリッドディース ・フローティング ・フリース ・フリント ・ス・ミラ・アイス ・レジ想 IP リソース ・レジ想 IP リソース ・ WS Elastic IPリソース ス・AWS DNS リソース ・AZURE DNS リソース ・Azure DNS リソース	
サービスリソースのプロパティ			
依存関係タブ			
既定の依存関係に従う	オン ・CIFS リソース ・NAS リソース ・ディスクリソース ・ディスクリソース ・ハイブリッドディスクリソース ・フローティング IP リソース ・プリントスプーラリソース ・ミラーディスクリソース ・レジストリ同期リソース ・仮想コンピュータ名リソース ・AWS Elastic IPリソース ・AWS 仮想IPリソース ・Azure プローブポート リソース	・仮想コンピュータ名リ	
CIFS リソースのプロパティ			
`詳細タブ			
共有設定復元時の失敗を活性異常	オン	オフ	

セクション II リリースノート (CLUSTERPRO 最新情報)

パラメータ	X 3.3 の 既定値	X 4.0 の 既定値	備考
とする			
NAS リソースのプロパティ			
依存関係タブ			
既定の依存関係に従う	オン ・フローティング IP リソース ・仮想 IP リソース ・AWS Elastic IPリソース ・AWS 仮想IPリソース ・AUS 仮想IPリソース ・Azure プローブポート リソース		
モニタリソース共通のプロパティ			
回復動作タブ			
最大フェイルオーバ回数	サーバ数に合わせる	1 [回]	[クラスタプロパ ティ] - [拡張タブ] - [フェイルオー バ回数のカウン ト単位]の既定値 変更に伴う変 更。
アプリケーション監視リソースのプロパ ティ			
監視 (共通) タブ			
監視開始待ち時間	0[秒]	3[秒]	
タイムアウト発生時にリトライしない	オフ	オン	
タイムアウト発生時に回復動作を実 行しない	オフ	オン	
フローティング IP 監視リソースのプロ パティ			
監視 (共通) タブ			
タイムアウト	60 [秒]	180 [秒]	
タイムアウト発生時にリトライしない	オフ	オン	
タイムアウト発生時に回復動作を実 行しない	オフ	オン	
NIC Link Up/Down 監視リソースのプロパティ			
監視 (共通) タブ			
タイムアウト	60 [秒]	180 [秒]	
タイムアウト発生時にリトライしない	オフ	オン	
タイムアウト発生時に回復動作を実 行しない	オフ	オン	
レジストリ同期監視リソースのプロパ			
ティ			
監視 (共通) タブ			

X 3.3 の 既定値	X 4.0 の 既定値	備考
オフ	オン	
オフ	オン	
0[秒]	3[秒]	
オフ	オン	
オフ	オン	
オフ	オン	
<u></u> オフ	オン	
60 [秒]	180 [秒]	
オフ	オン	
オフ	オン	
60 [秒]	180 [秒]	
オフ	オン	
オフ	オン	
60 [秒]	180 [秒]	
オフ	オン	
オフ	オン	
0[秒]	3[秒]	
0[秒]	3[秒]	
オフ	オン	
オフ	オン	
	既定値 オフ オフ (0[秒] オフ	既定値 状之 オフ オン (0[秒] 3[秒] オフ オン オフ オン オフ オン 4フ オン 50[秒] 180[秒] オフ オン オフ オン オフ オン オフ オン オフ オン オフ オン (0[秒] 3[秒] (0[秒] 3[秒] (0[秒] 3[秒] オフ オン オフ オン

パラメータ	X 3.3 の 既定値	X 4.0 の 既定値	備考
SQL Server 監視リソースのプロパティ			
監視 (固有) タブ			
ODBC ドライバ名	SQL Native Client	ODBC Driver 13 for SQL Server	
Weblogic 監視リソースのプロパティ			
監視 (固有) タブ			
インストールパス	C:¥bea¥weblogic92	C:¥Oracle¥Middleware ¥Oracle_Home¥wlserv er	
JVM 監視リソースのプロパティ			
タイムアウト	120[秒]	180 [秒]	
ダイナミック DNS 監視リソースのプロパ ティ			
監視 (共通) タブ			
タイムアウト	120 [秒]	180 [秒]	
タイムアウト発生時にリトライしない	オフ	オン	
タイムアウト発生時に回復動作を実 行しない	オフ	オン	
AWS Elastic IP 監視リソースのプロパティ			
監視 (共通) タブ			
タイムアウト	100 [秒]	180 [秒]	
タイムアウト発生時にリトライしない	オフ	オン	
タイムアウト発生時に回復動作を実 行しない	オフ	オン	
AWS 仮想IP監視リソースのプロパティ			
監視 (共通) タブ			
タイムアウト	100 [秒]	180 [秒]	
タイムアウト発生時にリトライしない	オフ	オン	
タイムアウト発生時に回復動作を実	オフ	オン	
行しない		7.7	
AWS AZ 監視リソースのプロパティ			
監視 (共通) タブ	400 FTh1	400 [7]	
タイムアウト タイムアウト発生時にリトライしない	100 [秒] オフ	180 [秒] オン	
タイムアウト発生時に可復動作を実			
行しない	オフ	オン	
Azure プローブポート監視リソースのプロパティ			
監視 (共通) タブ			
タイムアウト	100 [秒]	180 [秒]	
タイムアウト発生時にリトライしない	オフ	オン	

パラメータ	X 3.3 の 既定値	X 4.0 の 既定値	備考
タイムアウト発生時に回復動作を実 行しない	オフ	オン	
zure ロードバランス監視リソースのプ パティ			
監視 (共通) タブ			
タイムアウト	100 [秒]	180 [秒]	
タイムアウト発生時にリトライしない	オフ	オン	
タイムアウト発生時に回復動作を実 行しない	オフ	オン	

パラメータ移動一覧

Builder で設定可能なパラメータのうち、X 3.3 (内部バージョン 11.35) から設定箇所に変更があるものについて、以下の表に示します。

X 3.3 の設定箇所	X 4.0 の設定箇所
[クラスタのプロパティ]-[リカバリタブ]-[最大 再起動回数]	[クラスタのプロパティ]-[拡張タブ]-[最大再起動回数]
[クラスタのプロパティ]-[リカバリタブ]-[最大 再起動回数をリセットする時間]	[クラスタのプロパティ]-[拡張タブ]-[最大再起動回数をリセットする時間]
[クラスタのプロパティ]-[リカバリタブ]-[強制 停止機能を使用する]	[クラスタのプロパティ]-[拡張タブ]-[強制停止 機能を使用する]
[クラスタのプロパティ]-[リカバリタブ]-[強制 停止アクション]	[クラスタのプロパティ]-[拡張タブ]-[強制停止 アクション]
[クラスタのプロパティ]-[リカバリタブ]-[強制 停止タイムアウト]	[クラスタのプロパティ]-[拡張タブ]-[強制停止 タイムアウト]
[クラスタのプロパティ]-[リカバリタブ]-[仮想 マシン強制停止設定]	[クラスタのプロパティ]-[拡張タブ]-[仮想マシン強制停止設定]]
[クラスタのプロパティ]-[リカバリタブ]-[強制 停止スクリプトを実行する]	[クラスタのプロパティ]-[拡張タブ]-[強制停止 スクリプトを実行する]
[クラスタのプロパティ]-[省電カタブ]-[CPU クロック制御機能を使用する]	[クラスタのプロパティ]-[拡張タブ]-[CPU クロック制御機能を使用する]
[クラスタのプロパティ]-[自動復帰タブ]-[自動 復帰]	[クラスタのプロパティ]-[拡張タブ]-[自動復 帰]
[グループのプロパティ]-[属性タブ]- [フェイルオーバ排他属性]	[グループ共通のプロパティ] -[排他タブ]

旧バージョンとの互換性

CLUSTERPRO X 1.0/2.0/2.1/3.0/3.1/3.2/3.3 との互換性について

X 1.0/2.0/2.1/3.0/3.1/3.2/3.3 の Builder で作成したクラスタ構成情報は X 4.0 以降でも使用できます。ただし、X 2.0 以降ではグループリソース・モニタリソースの異常検出時のフェイルオーバ先サーバ選択方式が既定値の [安定動作サーバ] となるため、3 ノード以上の構成の場合にフェイルオーバ先の選択結果が X 1.0 と異なる場合があります。

フェイルオーバ先が複数ある場合に、[安定動作サーバ] に設定していると、フェイルオーバ先でさらに異常が発生した場合に、まだ異常が発生していないサーバに優先的にフェイルオーバすることができます。これに対し、X 1.0 の場合、移動可能なサーバの中で最もプライオリティの高いサーバにフェイルオーバしますので、最初に異常が発生していたサーバにフェイルバックしてしまい、3 台目のサーバにフェイルオーバできない場合があります。

このため、通常は [安定動作サーバ] に設定することを推奨していますが、X 1.0 と同じ動作にする必要がある場合は、各リソースのプロパティの設定タブで、フェイルオーバ先サーバ設定を [最高プライオリティサーバ] に変更してください。

CLUSTERPRO Ver8.0 以前との互換機能について

以下の機能を使用する場合、クラスタ名、サーバ名、グループ名は、Ver8.0 の命名規則に従って設定する必要があります。

- ◆ CLUSTERPRO クライアント
- ◆ ESMPRO/AC 連携機能
- ◆ ESMPRO/SM 連携機能
- ◆ 仮想コンピュータ名リソース
- ◆ 互換 API
- ◆ 互換コマンド

従来バージョンの命名規則は以下の通りです。

- ◆ クラスタ名
 - 15 文字以内
 - 使用可能な文字は、半角英数字、ハイフン(-)、アンダーバー()です。
 - PRN などの DOS 入出力デバイス名は指定しないでください。
 - 大文字、小文字を区別しません。
- ◆ サーバ名
 - 15 文字以内
 - 使用可能な文字は、半角英数字、ハイフン(-)、アンダーバー(_)です。
 - 大文字、小文字を区別しません。
- ◆ グループ名
 - 15 文字以内
 - 使用可能な文字は、半角英数字、ハイフン(-)、アンダーバー(_)です。
 - PRN などの DOS 入出力デバイス名は指定しないでください。
 - 大文字、小文字を区別しません。

互換 API について

互換 API は、CLUSTERPRO Ver8.0 以前で使用可能であった API を指します。互換 API は CLUSTERPRO X でも使用可能ですが、以下の制限事項があります。

下記に示すリソースのみ対応しています。その他のリソースは設定しても互換 API から参照 することはできません。

- ディスクリソース
- ミラーディスクリソース
- 仮想コンピュータ名リソース
- フローティング IP リソース(IPv4 アドレスのみ)
- 仮想 IP リソース(IPv4 アドレスのみ)
- プリントスプーラリソース

クラスタ名、サーバ名、グループ名は、従来バージョンの規則に従い設定する必要があります。 従来バージョン規則外の名称を指定された場合は、互換 API で参照することはできません。

Builder で指定されたリソース名を使用して、互換 API を使用することはできません。

クラスタイベントの発生タイミングは、完全互換ではありません。イベントの種類は同じですが、 通知されるイベントの数、順序は従来バージョンと異なる場合があります。

常駐プロセスから互換 API を使用している場合、[CLUSTERPRO Server] サービスの停止 →再起動時に、ArmTerminateApi → ArminitializeApi を実行し、互換 API の再初期化を行 う必要があります。原則として、スクリプトリソースの開始・終了スクリプトでプロセスを起動・停 止するように設定してください。

Ver3.0 互換 I/F は使用できません。

クライアント API について

クライアント API は、CLUSTERPRO Ver8.0 以前で使用可能であった API を指します。クライアント API は CLUSTERPRO X でも使用可能ですが、以下の制限事項があります。

クラスタの構成変更を伴うクラスタサスペンド、リジューム行う場合、[CLUSTERPRO Old API Support] サービスの再起動を行う必要があります。

クラスタサーバを起動する場合、[CLUSTERPRO Old API Support] サービスの再起動もしくはポーリング間隔のチューニングを行う必要があります。

スクリプトファイルについて

CLUSTERPRO Ver8.0 以前で使用していたスクリプトファイルを移植する場合、環境変数名の最初の "ARMS_" を "CLP_" に置換してください。

例) IF "%ARMS_EVENT%" == "START" GOTO NORMAL

IF "%CLP EVENT%" == "START" GOTO NORMAL

付録

- 付録 A 用語集
- 付録 B 索引

付録 A 用語集

あ

インタコネクト クラスタ サーバ間の通信パス

(関連) プライベート LAN、パブリック LAN

か

仮想 IP アドレス 遠隔地クラスタを構築する場合に使用するリソース

(IP アドレス)

管理クライアント Cluster WebUI / WebManager が起動されているマ

シン

起動属性 クラスタ起動時、自動的にフェイルオーバグループを

起動するか、手動で起動するかを決定するフェイル

オーバ グループの属性

管理クライアントより設定が可能

共有ディスク 複数サーバよりアクセス可能なディスク

共有ディスク型クラスタ 共有ディスクを使用するクラスタシステム

切替パーティション 複数のコンピュータに接続され、切り替えながら使用

可能なディスクパーティション

(関連) ディスクハートビート用パーティション

クラスタシステム 複数のコンピュータを LAN などでつないで、1つのシ

ステムのように振る舞わせるシステム形態

クラスタシャットダウン クラスタシステム全体(クラスタを構成する全サーバ)

をシャットダウンさせること

クラスタパーティション ミラーディスクに設定するパーティション。ミラーディス

クの管理に使用する。

(関連) ディスクハートビート用パーティション

現用系 ある 1 つの業務セットについて、業務が動作してい

るサーバ (関連) 待機系

さ

サーバグループ 同じネットワークや共有ディスク装置に接続している

サーバの集合

セカンダリ (サーバ) 通常運用時、フェイルオーバグループがフェイルオー

バする先のサーバ

(関連) プライマリ (サーバ)

た

待機系 現用系ではない方のサーバ

(関連) 現用系

ディスクハートビート用パー 共有ディスク型クラスタで、ハートビート通信に使用す

ティション るためのパーティション

データパーティション 共有ディスクの切替パーティションのように使用するこ

とが可能なローカルディスク

ミラーディスクに設定するデータ用のパーティション

(関連) クラスタパーティション

な

ネットワークパーティション 全てのハートビートが途切れてしまうこと

(関連) インタコネクト、ハートビート

ノード クラスタシステムでは、クラスタを構成するサーバを指

す。ネットワーク用語では、データを他の機器に経由することのできる、コンピュータやルータなどの機器を

指す。

は

ハートビート サーバの監視のために、サーバ間で定期的にお互い

に通信を行うこと

(関連) インタコネクト、ネットワークパーティション

パブリック LAN サーバ/クライアント間通信パスのこと

(関連) インタコネクト、プライベート LAN

フェイルオーバ 障害検出により待機系が、現用系上の業務アプリ

ケーションを引き継ぐこと

フェイルバック あるサーバで起動していた業務アプリケーションが

フェイルオーバにより他のサーバに引き継がれた後、 業務アプリケーションを起動していたサーバに再び業

務を戻すこと

フェイルオーバグループ 業務を実行するのに必要なクラスタリソース、属性の

集合

フェイルオーバグループの移 ユーザが意図的に業務アプリケーションを現用系から

物 待機系に移動させること

フェイルオーバポリシ フェイルオーバ可能なサーバリストとその中でのフェイ

ルオーバ優先順位を持つ属性

プライベート LAN クラスタを構成するサーバのみが接続された LAN

(関連) インタコネクト、パブリック LAN

プライマリ (サーバ) フェイルオーバグループでの基準で主となるサーバ

(関連) セカンダリ (サーバ)

フローティング IP アドレス フェイルオーバが発生したとき、クライアントのアプリ

ケーションが接続先サーバの切り替えを意識すること

なく使用できる IP アドレス

クラスタサーバが所属する LAN と同一のネットワーク アドレス内で、他に使用されていないホストアドレ

スを割り当てる

ま

マスタサーバ Builder の [サーバ共通のプロパティ]-[マスタサーバ]

で先頭に表示されているサーバ

ミラーコネクト データミラー型クラスタでデータのミラーリングを行う

ために使用する LAN。プライマリインタコネクトと兼用

で設定することが可能。

ミラーディスクシステム 共有ディスクを使用しないクラスタシステム

サーバのローカルディスクをサーバ間でミラーリング

する

付録 B 索引

2

2バイト系文字コード, 104

Α

AWS DNS 監視リソース, 106 AWS DNS リソース, 106 AWS DNS リソース、AWS DNS 監視リソースの動作 環境, 68

AWS Elastic IP リソース, 105

AWS Elastic IP リソース、AWS 仮想IP リソースの動作環境、68

AWS 仮想IP リソース, 106 Azure DNS リソース, 102, 107

Azure DNS リソース、Azure DNS 監視リソースの動作環境. 69

Azure プローブポートリソース, 101, 107

Azure プローブポートリソース、Azure プローブポート 監視リソース、Azure ロードバランス監視リソースの 動作環境, 69

Azure ロードバランス監視リソース, 107

В

Builder, 57, 72, 111

C

chkdskコマンド, 112 Cluster WebUl, 57, 71 CLUSTERPRO, 33, 34 CLUSTERPRO Disk Agentサービス, 112

Ε

ESMPRO/AC, 95 Express5800/A1080a,A1040aシリーズ連携に対応し たサーバ, 58

Н

HA クラスタ, 17 HBA のアクセス制限, 97

Ι

ipmiutil, 96 IPv6アドレス, 85 IPアドレスの引き継ぎ, 26

J

Java実行環境, 72, 73, 74 JVM監視, 64, 105 JVM監視リソース, 115

0

OS, 59, 71, 72, 73, 74 OS起動時間, 94

Р

PostgreSQL監視, 105

S

SAP連携コネクタの動作環境, 70 Server Core, 96 Single Point of Failure (SPOF), 15, 28

Т

TUR, 103

W

WebManager, 57, 73, 74, 110 write性能, 86

X

X3.3 から削除された機能一覧, 118

あ

アプリケーションの引き継ぎ, 27

い

依存関係, 117 インデックスサービス, 113

え

AMIのリストア, 116

か

回復動作中の操作制限, 109 外部連携モニタリソース, 114 画面更新間隔, 103 監視できる障害とできない障害, 38 管理ツールについて, 118

き

既定値変更一覧, 119 旧バージョン互換機能, 127 業務監視, 37 共有ディスク, 93 共有ディスク要件, 85

<

クライアントAPI, 128 クラスタオブジェクト, 47 クラスタシステム, 15, 16 クラスタシャットダウン, 109 クラスタシャットダウンリブート, 109 クラスタリソースの引き継ぎ, 26 グループリソース, 49, 103 グループリソースの追加、削除, 117

け

検出できる障害とできない障害,38

J

互換API, 128

さ

サーバ監視, 37 サービス失敗時の回復操作, 107 最終アクション, 103

し

時刻同期, 93 システム構成, 21 実行形式ファイル, 109 修正情報, 79 障害監視, 32, 36 障害検出, 15, 24

す

スクリプトファイル, 109 スペック, 58

世

製品構成,35

そ

ソフトウェア, 59 ソフトウェア構成, 36

た

対話型サービスダイアログの検出ポップアップ表示, 116 ち

遅延警告割合, 103

つ

通信ポート番号, 89 通信ポート番号の自動割り当て範囲の変更, 92

て

ディスクサイズ, 59 ディスク容量, 71, 72, 73, 74 データ整合性, 87 データの引き継ぎ, 26 デフラグ, 112

ح

統合WebManager用IPアドレス, 104 動作確認済アプリケーション情報, 60 特定サーバのシャットダウン, 109 特定サーバのシャットダウンリブート, 109

な

内部監視. 38

ね

ネットワーク, 95 ネットワーク警告灯, 88 ネットワーク構成, 85 ネットワークパーティション解決リソース, 48 ネットワークパーティション症状, 25 ネットワークパーティション状態からの復旧, 110 ネットワーク負荷分散機能との共存, 108

は

ハードウェア, 58 ハードウェア構成, 42, 43, 45 ハートビートリソース, 48, 104 排他ルール, 117 ハイブリッドディスク要件, 84 ハイブリッドディスク用パーティション, 94 パラメータ移動一覧, 126 パラメータ削除一覧, 118

ふ

ファイルシステム, 89 フェイルオーバ, 27, 40 ブラウザ, 71, 72, 73, 74 **も**

ポート数不足を回避する設定, 92 モニタリソース, 51

みり

ミラーディスク要件, 84 リソース, 33, 48 ミラーディスク用パーティション, 93 履歴ファイル, 86

め

メール通報, 96 メモリ容量, 59, 71, 72, 73, 74